update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
- f1
|
7 |
+
model-index:
|
8 |
+
- name: wavlm-large-finetuned-iemocap2
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wavlm-large-finetuned-iemocap2
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.0935
|
20 |
+
- Accuracy: 0.5335
|
21 |
+
- F1: 0.5005
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 3e-05
|
41 |
+
- train_batch_size: 32
|
42 |
+
- eval_batch_size: 32
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 4
|
45 |
+
- total_train_batch_size: 128
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_ratio: 0.1
|
49 |
+
- num_epochs: 20
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
55 |
+
| 1.3826 | 0.98 | 25 | 1.3815 | 0.2502 | 0.1003 |
|
56 |
+
| 1.3263 | 1.98 | 50 | 1.3663 | 0.2502 | 0.1002 |
|
57 |
+
| 1.2563 | 2.98 | 75 | 1.2589 | 0.3870 | 0.3051 |
|
58 |
+
| 1.1869 | 3.98 | 100 | 1.2042 | 0.3977 | 0.3428 |
|
59 |
+
| 1.1291 | 4.98 | 125 | 1.1768 | 0.4539 | 0.4557 |
|
60 |
+
| 1.1171 | 5.98 | 150 | 1.1425 | 0.4888 | 0.4799 |
|
61 |
+
| 1.0811 | 6.98 | 175 | 1.1316 | 0.4956 | 0.4851 |
|
62 |
+
| 1.0627 | 7.98 | 200 | 1.1241 | 0.5044 | 0.4859 |
|
63 |
+
| 1.079 | 8.98 | 225 | 1.1026 | 0.5228 | 0.5031 |
|
64 |
+
| 1.0294 | 9.98 | 250 | 1.1018 | 0.5199 | 0.4959 |
|
65 |
+
| 1.0088 | 10.98 | 275 | 1.0903 | 0.5325 | 0.5046 |
|
66 |
+
| 1.0217 | 11.98 | 300 | 1.0966 | 0.5296 | 0.5015 |
|
67 |
+
| 1.0034 | 12.98 | 325 | 1.1012 | 0.5296 | 0.4990 |
|
68 |
+
| 1.0024 | 13.98 | 350 | 1.0832 | 0.5393 | 0.5127 |
|
69 |
+
| 1.0047 | 14.98 | 375 | 1.0902 | 0.5315 | 0.4986 |
|
70 |
+
| 0.9436 | 15.98 | 400 | 1.0896 | 0.5373 | 0.5085 |
|
71 |
+
| 0.9584 | 16.98 | 425 | 1.0859 | 0.5412 | 0.5114 |
|
72 |
+
| 0.9859 | 17.98 | 450 | 1.0865 | 0.5412 | 0.5120 |
|
73 |
+
| 0.9679 | 18.98 | 475 | 1.0926 | 0.5335 | 0.4999 |
|
74 |
+
| 0.9468 | 19.98 | 500 | 1.0935 | 0.5335 | 0.5005 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.26.1
|
80 |
+
- Pytorch 1.13.1+cu116
|
81 |
+
- Datasets 2.9.0
|
82 |
+
- Tokenizers 0.13.2
|