Zahra99 commited on
Commit
110622a
·
1 Parent(s): 668d483

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - accuracy
6
+ - f1
7
+ model-index:
8
+ - name: wavlm-large-finetuned-iemocap2
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wavlm-large-finetuned-iemocap2
16
+
17
+ This model is a fine-tuned version of [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.0935
20
+ - Accuracy: 0.5335
21
+ - F1: 0.5005
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 3e-05
41
+ - train_batch_size: 32
42
+ - eval_batch_size: 32
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 4
45
+ - total_train_batch_size: 128
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_ratio: 0.1
49
+ - num_epochs: 20
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
55
+ | 1.3826 | 0.98 | 25 | 1.3815 | 0.2502 | 0.1003 |
56
+ | 1.3263 | 1.98 | 50 | 1.3663 | 0.2502 | 0.1002 |
57
+ | 1.2563 | 2.98 | 75 | 1.2589 | 0.3870 | 0.3051 |
58
+ | 1.1869 | 3.98 | 100 | 1.2042 | 0.3977 | 0.3428 |
59
+ | 1.1291 | 4.98 | 125 | 1.1768 | 0.4539 | 0.4557 |
60
+ | 1.1171 | 5.98 | 150 | 1.1425 | 0.4888 | 0.4799 |
61
+ | 1.0811 | 6.98 | 175 | 1.1316 | 0.4956 | 0.4851 |
62
+ | 1.0627 | 7.98 | 200 | 1.1241 | 0.5044 | 0.4859 |
63
+ | 1.079 | 8.98 | 225 | 1.1026 | 0.5228 | 0.5031 |
64
+ | 1.0294 | 9.98 | 250 | 1.1018 | 0.5199 | 0.4959 |
65
+ | 1.0088 | 10.98 | 275 | 1.0903 | 0.5325 | 0.5046 |
66
+ | 1.0217 | 11.98 | 300 | 1.0966 | 0.5296 | 0.5015 |
67
+ | 1.0034 | 12.98 | 325 | 1.1012 | 0.5296 | 0.4990 |
68
+ | 1.0024 | 13.98 | 350 | 1.0832 | 0.5393 | 0.5127 |
69
+ | 1.0047 | 14.98 | 375 | 1.0902 | 0.5315 | 0.4986 |
70
+ | 0.9436 | 15.98 | 400 | 1.0896 | 0.5373 | 0.5085 |
71
+ | 0.9584 | 16.98 | 425 | 1.0859 | 0.5412 | 0.5114 |
72
+ | 0.9859 | 17.98 | 450 | 1.0865 | 0.5412 | 0.5120 |
73
+ | 0.9679 | 18.98 | 475 | 1.0926 | 0.5335 | 0.4999 |
74
+ | 0.9468 | 19.98 | 500 | 1.0935 | 0.5335 | 0.5005 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.26.1
80
+ - Pytorch 1.13.1+cu116
81
+ - Datasets 2.9.0
82
+ - Tokenizers 0.13.2