|
|
import json
|
|
|
import os
|
|
|
from PIL import Image
|
|
|
import numpy as np
|
|
|
from pycocotools.mask import encode, decode, frPyObjects
|
|
|
from tqdm import tqdm
|
|
|
import copy
|
|
|
from natsort import natsorted
|
|
|
import cv2
|
|
|
|
|
|
import argparse
|
|
|
parser = argparse.ArgumentParser()
|
|
|
parser.add_argument('--root_path', type=str, default='', required=True,
|
|
|
help='Root path of the dataset')
|
|
|
parser.add_argument('--save_path', type=str, default='', required=True,
|
|
|
help='Path to save the json file')
|
|
|
parser.add_argument('--split_path', type=str, default='', required=True,
|
|
|
help='Path to the split file')
|
|
|
parser.add_argument("--split", type=str, default="val", help="Split to use (train/val/test)")
|
|
|
parser.add_argument('--task', type=str, default='ego2exo', help='Task type (ego2exo/exo2ego)')
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
|
root_path = args.root_path
|
|
|
save_path = args.save_path
|
|
|
split_path = args.split_path
|
|
|
|
|
|
|
|
|
with open(split_path, "r") as fp:
|
|
|
data_split = json.load(fp)
|
|
|
data_set = data_split[args.split]
|
|
|
|
|
|
|
|
|
with open("datasets/missing_takes.txt", "r") as fp:
|
|
|
missing_files = [line.strip() for line in fp.readlines()]
|
|
|
|
|
|
|
|
|
new_img_id = 0
|
|
|
|
|
|
egoexo_dataset = []
|
|
|
|
|
|
for vid_name in tqdm(data_set):
|
|
|
if vid_name in missing_files:
|
|
|
continue
|
|
|
|
|
|
|
|
|
vid_root_path = os.path.join(root_path, vid_name)
|
|
|
anno_path = os.path.join(vid_root_path, "annotation.json")
|
|
|
with open(anno_path, 'r') as fp:
|
|
|
annotations = json.load(fp)
|
|
|
|
|
|
|
|
|
objs = natsorted(list(annotations["masks"].keys()))
|
|
|
coco_id_to_cont_id = {coco_id: cont_id + 1 for cont_id, coco_id in enumerate(objs)}
|
|
|
|
|
|
|
|
|
valid_cams = os.listdir(vid_root_path)
|
|
|
valid_cams.remove("annotation.json")
|
|
|
valid_cams = natsorted(valid_cams)
|
|
|
ego_cams = []
|
|
|
exo_cams = []
|
|
|
for vc in valid_cams:
|
|
|
if 'aria' in vc:
|
|
|
ego_cams.append(vc)
|
|
|
else:
|
|
|
exo_cams.append(vc)
|
|
|
ego = ego_cams[0]
|
|
|
exo = exo_cams[0]
|
|
|
vid_ego_path = os.path.join(vid_root_path, ego)
|
|
|
ego_frames = natsorted(os.listdir(vid_ego_path))
|
|
|
ego_frames = [f.split(".")[0] for f in ego_frames]
|
|
|
objs_both_have = []
|
|
|
for obj in objs:
|
|
|
if ego in annotations["masks"][obj].keys() and exo in annotations["masks"][obj].keys():
|
|
|
objs_both_have.append(obj)
|
|
|
|
|
|
if len(exo_cams) > 1:
|
|
|
for cam in exo_cams[1:]:
|
|
|
objs_both_have_tmp = []
|
|
|
for obj in objs:
|
|
|
if ego in annotations["masks"][obj].keys() and cam in annotations["masks"][obj].keys():
|
|
|
objs_both_have_tmp.append(obj)
|
|
|
if len(objs_both_have_tmp) > len(objs_both_have):
|
|
|
exo = cam
|
|
|
objs_both_have = objs_both_have_tmp
|
|
|
if len(objs_both_have) == 0:
|
|
|
continue
|
|
|
vid_exo_path = os.path.join(vid_root_path, exo)
|
|
|
exo_frames = natsorted(os.listdir(vid_exo_path))
|
|
|
exo_frames = [f.split(".")[0] for f in exo_frames]
|
|
|
|
|
|
|
|
|
if args.task == 'ego2exo':
|
|
|
query_cam = ego
|
|
|
target_cam = exo
|
|
|
target_cam_anno_frames = exo_frames
|
|
|
vid_target_path = vid_exo_path
|
|
|
vid_query_path = vid_ego_path
|
|
|
elif args.task == 'exo2ego':
|
|
|
query_cam = exo
|
|
|
target_cam = ego
|
|
|
target_cam_anno_frames = ego_frames
|
|
|
vid_target_path = vid_ego_path
|
|
|
vid_query_path = vid_exo_path
|
|
|
else:
|
|
|
raise ValueError("Task must be either 'ego2exo' or 'exo2ego'.")
|
|
|
|
|
|
|
|
|
obj_ref = objs_both_have[0]
|
|
|
for obj in objs_both_have:
|
|
|
if len(list(annotations["masks"][obj_ref][query_cam].keys())) < len(list(annotations["masks"][obj][query_cam].keys())):
|
|
|
obj_ref = obj
|
|
|
query_cam_anno_frames = natsorted(list(annotations["masks"][obj_ref][query_cam].keys()))
|
|
|
frames = natsorted(np.intersect1d(query_cam_anno_frames, target_cam_anno_frames))
|
|
|
|
|
|
for idx in frames:
|
|
|
coco_format_annotations = []
|
|
|
filename = f"{idx}.jpg"
|
|
|
|
|
|
sample_img_path = os.path.join(vid_target_path, filename)
|
|
|
sample_img_relpath = os.path.relpath(sample_img_path, root_path)
|
|
|
first_frame_img_path = os.path.join(vid_query_path, filename)
|
|
|
first_frame_img_relpath = os.path.relpath(first_frame_img_path, root_path)
|
|
|
|
|
|
|
|
|
obj_list_query = []
|
|
|
for obj in objs_both_have:
|
|
|
if idx in annotations["masks"][obj][query_cam].keys():
|
|
|
mask_query = decode(annotations["masks"][obj][query_cam][idx])
|
|
|
area_new = mask_query.sum().astype(float)
|
|
|
if area_new != 0:
|
|
|
obj_list_query.append(obj)
|
|
|
if len(obj_list_query) == 0:
|
|
|
continue
|
|
|
obj_list_query_new = []
|
|
|
for obj in obj_list_query:
|
|
|
segmentation_tmp = annotations["masks"][obj][query_cam][idx]
|
|
|
binary_mask = decode(segmentation_tmp)
|
|
|
h, w = binary_mask.shape
|
|
|
if args.task == 'ego2exo':
|
|
|
binary_mask = cv2.resize(binary_mask, (w // 2, h // 2), interpolation=cv2.INTER_NEAREST)
|
|
|
elif args.task == 'exo2ego':
|
|
|
binary_mask = cv2.resize(binary_mask, (w // 4, h // 4), interpolation=cv2.INTER_NEAREST)
|
|
|
area = binary_mask.sum().astype(float)
|
|
|
if area == 0:
|
|
|
continue
|
|
|
segmentation = encode(np.asfortranarray(binary_mask))
|
|
|
segmentation = {
|
|
|
'counts': segmentation['counts'].decode('ascii'),
|
|
|
'size': segmentation["size"],
|
|
|
}
|
|
|
obj_list_query_new.append(obj)
|
|
|
coco_format_annotations.append(
|
|
|
{
|
|
|
'segmentation': segmentation,
|
|
|
'area': area,
|
|
|
'category_id': float(coco_id_to_cont_id[obj]),
|
|
|
}
|
|
|
)
|
|
|
if len(obj_list_query_new) == 0:
|
|
|
continue
|
|
|
|
|
|
|
|
|
obj_list_target = []
|
|
|
for obj in obj_list_query_new:
|
|
|
if idx in annotations["masks"][obj][target_cam].keys():
|
|
|
mask_target = decode(annotations["masks"][obj][target_cam][idx])
|
|
|
area_target = mask_target.sum().astype(float)
|
|
|
if area_target != 0:
|
|
|
obj_list_target.append(obj)
|
|
|
if len(obj_list_target) == 0:
|
|
|
continue
|
|
|
height, width = annotations["masks"][obj_list_target[0]][target_cam][idx]["size"]
|
|
|
if args.task == 'ego2exo':
|
|
|
image_info = {
|
|
|
'file_name': sample_img_relpath,
|
|
|
'height': height // 4,
|
|
|
'width': width // 4,
|
|
|
}
|
|
|
elif args.task == 'exo2ego':
|
|
|
image_info = {
|
|
|
'file_name': sample_img_relpath,
|
|
|
'height': height // 2,
|
|
|
'width': width // 2,
|
|
|
}
|
|
|
anns = []
|
|
|
obj_list_target_new = []
|
|
|
for obj in obj_list_target:
|
|
|
assert obj in obj_list_query_new, 'Found new target not in the first frame'
|
|
|
segmentation_tmp = annotations["masks"][obj][target_cam][idx]
|
|
|
binary_mask = decode(segmentation_tmp)
|
|
|
h, w = binary_mask.shape
|
|
|
if args.task == 'ego2exo':
|
|
|
binary_mask = cv2.resize(binary_mask, (w // 4, h // 4), interpolation=cv2.INTER_NEAREST)
|
|
|
elif args.task == 'exo2ego':
|
|
|
binary_mask = cv2.resize(binary_mask, (w // 2, h // 2), interpolation=cv2.INTER_NEAREST)
|
|
|
area = binary_mask.sum().astype(float)
|
|
|
if area == 0:
|
|
|
continue
|
|
|
segmentation = encode(np.asfortranarray(binary_mask))
|
|
|
segmentation = {
|
|
|
'counts': segmentation['counts'].decode('ascii'),
|
|
|
'size': segmentation['size'],
|
|
|
}
|
|
|
obj_list_target_new.append(obj)
|
|
|
anns.append(
|
|
|
{
|
|
|
'segmentation': segmentation,
|
|
|
'area': area,
|
|
|
'category_id': float(coco_id_to_cont_id[obj]),
|
|
|
}
|
|
|
)
|
|
|
if len(obj_list_target_new) == 0:
|
|
|
continue
|
|
|
|
|
|
sample_unique_instances = [float(coco_id_to_cont_id[obj]) for obj in obj_list_target_new]
|
|
|
first_frame_anns = copy.deepcopy(coco_format_annotations)
|
|
|
if len(anns) < len(first_frame_anns):
|
|
|
first_frame_anns = [ann for ann in first_frame_anns if ann['category_id'] in sample_unique_instances]
|
|
|
assert len(anns) == len(first_frame_anns)
|
|
|
sample = {
|
|
|
'image': sample_img_relpath,
|
|
|
'image_info': image_info,
|
|
|
'anns': anns,
|
|
|
'first_frame_image': first_frame_img_relpath,
|
|
|
'first_frame_anns': first_frame_anns,
|
|
|
'new_img_id': new_img_id,
|
|
|
'video_name': vid_name,
|
|
|
}
|
|
|
egoexo_dataset.append(sample)
|
|
|
new_img_id += 1
|
|
|
|
|
|
with open(save_path, 'w') as f:
|
|
|
json.dump(egoexo_dataset, f)
|
|
|
print(f'Save at {save_path}. Total sample: {len(egoexo_dataset)}')
|
|
|
|