Add pipeline tag and license to model card, link to code
Browse filesThis PR adds the missing `pipeline_tag` and `license` to the model card metadata. The `pipeline_tag` is set to `image-text-to-text` based on the model's functionality as described in the abstract and usage example.
It also adds a link to the github repository so it's easier for people to use the model.
README.md
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
tags: []
|
|
|
|
|
4 |
---
|
5 |
|
6 |
# Fine-Grained Visual Classification on HAM10000
|
@@ -9,16 +11,15 @@ Project Page: [SelfSynthX](https://github.com/sycny/SelfSynthX).
|
|
9 |
|
10 |
Paper on arXiv: [Enhancing Cognition and Explainability of Multimodal Foundation Models with Self-Synthesized Data](https://arxiv.org/abs/2502.14044)
|
11 |
|
12 |
-
|
13 |
-
This model is a fine-tuned multimodal foundation model developed on the [LLaVA-1.5-7B-hf](https://huggingface.co/llava-hf/llava-1.5-7b-hf) base, optimized for fine-grained skin lesion classification and explainability using the HAM10000 dataset.
|
14 |
|
15 |
## Key Details
|
16 |
|
17 |
-
- **Base Model:** LLaVA-1.5-7B
|
18 |
- **Dataset:** HAM10000
|
19 |
-
- **Innovation:**
|
20 |
-
- **Self-Synthesized Data:** Generates interpretable explanations by extracting lesion-specific visual concepts using the Information Bottleneck principle.
|
21 |
-
- **Iterative Fine-Tuning:** Uses reward model-free rejection sampling to progressively improve classification accuracy and explanation quality.
|
22 |
- **Intended Use:** Skin lesion classification with human-verifiable explanations for dermatological analysis.
|
23 |
|
24 |
## How to Use
|
@@ -31,8 +32,8 @@ from transformers import AutoProcessor, LlavaForConditionalGeneration
|
|
31 |
|
32 |
model_id = "YuchengShi/LLaVA-v1.5-7B-HAM10000"
|
33 |
model = LlavaForConditionalGeneration.from_pretrained(
|
34 |
-
model_id,
|
35 |
-
torch_dtype=torch.float16,
|
36 |
low_cpu_mem_usage=True,
|
37 |
).to("cuda")
|
38 |
processor = AutoProcessor.from_pretrained(model_id)
|
@@ -57,7 +58,7 @@ print(processor.decode(output[0][2:], skip_special_tokens=True))
|
|
57 |
|
58 |
## Training & Evaluation
|
59 |
|
60 |
-
- **Training:** Fine-tuned using LoRA on HAM10000 with iterative rejection sampling.
|
61 |
- **Evaluation:** Demonstrates higher accuracy and robust, interpretable explanations compared to baseline models.
|
62 |
|
63 |
## Citation
|
@@ -73,4 +74,10 @@ If you use this model, please cite:
|
|
73 |
year={2025},
|
74 |
url={https://openreview.net/forum?id=lHbLpwbEyt}
|
75 |
}
|
76 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
tags: []
|
4 |
+
pipeline_tag: image-text-to-text
|
5 |
+
license: mit
|
6 |
---
|
7 |
|
8 |
# Fine-Grained Visual Classification on HAM10000
|
|
|
11 |
|
12 |
Paper on arXiv: [Enhancing Cognition and Explainability of Multimodal Foundation Models with Self-Synthesized Data](https://arxiv.org/abs/2502.14044)
|
13 |
|
14 |
+
This model is a fine-tuned multimodal foundation model developed on the [LLaVA-1.5-7B-hf](https://huggingface.co/llava-hf/llava-1.5-7B-hf) base, optimized for fine-grained skin lesion classification and explainability using the HAM10000 dataset.
|
|
|
15 |
|
16 |
## Key Details
|
17 |
|
18 |
+
- **Base Model:** LLaVA-1.5-7B
|
19 |
- **Dataset:** HAM10000
|
20 |
+
- **Innovation:**
|
21 |
+
- **Self-Synthesized Data:** Generates interpretable explanations by extracting lesion-specific visual concepts using the Information Bottleneck principle.
|
22 |
+
- **Iterative Fine-Tuning:** Uses reward model-free rejection sampling to progressively improve classification accuracy and explanation quality.
|
23 |
- **Intended Use:** Skin lesion classification with human-verifiable explanations for dermatological analysis.
|
24 |
|
25 |
## How to Use
|
|
|
32 |
|
33 |
model_id = "YuchengShi/LLaVA-v1.5-7B-HAM10000"
|
34 |
model = LlavaForConditionalGeneration.from_pretrained(
|
35 |
+
model_id,
|
36 |
+
torch_dtype=torch.float16,
|
37 |
low_cpu_mem_usage=True,
|
38 |
).to("cuda")
|
39 |
processor = AutoProcessor.from_pretrained(model_id)
|
|
|
58 |
|
59 |
## Training & Evaluation
|
60 |
|
61 |
+
- **Training:** Fine-tuned using LoRA on HAM10000 with iterative rejection sampling.
|
62 |
- **Evaluation:** Demonstrates higher accuracy and robust, interpretable explanations compared to baseline models.
|
63 |
|
64 |
## Citation
|
|
|
74 |
year={2025},
|
75 |
url={https://openreview.net/forum?id=lHbLpwbEyt}
|
76 |
}
|
77 |
+
```
|
78 |
+
|
79 |
+
## Contact
|
80 |
+
|
81 |
+
For any questions, suggestions, or issues, please open an issue on GitHub or contact us at [[email protected]](mailto:[email protected]).
|
82 |
+
|
83 |
+
Github repository: https://github.com/sycny/SelfSynthX
|