Update README.md
Browse files
README.md
CHANGED
|
@@ -3,4 +3,196 @@ library_name: transformers.js
|
|
| 3 |
tags:
|
| 4 |
- pose-estimation
|
| 5 |
license: agpl-3.0
|
| 6 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
tags:
|
| 4 |
- pose-estimation
|
| 5 |
license: agpl-3.0
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
YOLOv8s-pose with ONNX weights to be compatible with Transformers.js.
|
| 9 |
+
|
| 10 |
+
## Usage (Transformers.js)
|
| 11 |
+
|
| 12 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
|
| 13 |
+
```bash
|
| 14 |
+
npm i @xenova/transformers
|
| 15 |
+
```
|
| 16 |
+
|
| 17 |
+
**Example:** Perform pose-estimation w/ `Xenova/yolov8s-pose`.
|
| 18 |
+
|
| 19 |
+
```js
|
| 20 |
+
import { AutoModel, AutoProcessor, RawImage } from '@xenova/transformers';
|
| 21 |
+
|
| 22 |
+
// Load model and processor
|
| 23 |
+
const model_id = 'Xenova/yolov8s-pose';
|
| 24 |
+
const model = await AutoModel.from_pretrained(model_id);
|
| 25 |
+
const processor = await AutoProcessor.from_pretrained(model_id);
|
| 26 |
+
|
| 27 |
+
// Read image and run processor
|
| 28 |
+
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/football-match.jpg';
|
| 29 |
+
const image = await RawImage.read(url);
|
| 30 |
+
const { pixel_values } = await processor(image);
|
| 31 |
+
|
| 32 |
+
// Set thresholds
|
| 33 |
+
const threshold = 0.3; // Remove detections with low confidence
|
| 34 |
+
const iouThreshold = 0.5; // Used to remove duplicates
|
| 35 |
+
const pointThreshold = 0.3; // Hide uncertain points
|
| 36 |
+
|
| 37 |
+
// Predict bounding boxes and keypoints
|
| 38 |
+
const { output0 } = await model({ images: pixel_values });
|
| 39 |
+
|
| 40 |
+
// Post-process:
|
| 41 |
+
const permuted = output0[0].transpose(1, 0);
|
| 42 |
+
// `permuted` is a Tensor of shape [ 8400, 56 ]:
|
| 43 |
+
// - 8400 potential detections
|
| 44 |
+
// - 56 parameters for each box:
|
| 45 |
+
// - 4 for the bounding box dimensions (x-center, y-center, width, height)
|
| 46 |
+
// - 1 for the confidence score
|
| 47 |
+
// - 17 * 3 = 51 for the pose keypoints: 17 labels, each with (x, y, visibilitiy)
|
| 48 |
+
|
| 49 |
+
// Example code to format it nicely:
|
| 50 |
+
const results = [];
|
| 51 |
+
const [scaledHeight, scaledWidth] = pixel_values.dims.slice(-2);
|
| 52 |
+
for (const [xc, yc, w, h, score, ...keypoints] of permuted.tolist()) {
|
| 53 |
+
if (score < threshold) continue;
|
| 54 |
+
|
| 55 |
+
// Get pixel values, taking into account the original image size
|
| 56 |
+
const x1 = (xc - w / 2) / scaledWidth * image.width;
|
| 57 |
+
const y1 = (yc - h / 2) / scaledHeight * image.height;
|
| 58 |
+
const x2 = (xc + w / 2) / scaledWidth * image.width;
|
| 59 |
+
const y2 = (yc + h / 2) / scaledHeight * image.height;
|
| 60 |
+
results.push({ x1, x2, y1, y2, score, keypoints })
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
// Define helper functions
|
| 65 |
+
function removeDuplicates(detections, iouThreshold) {
|
| 66 |
+
const filteredDetections = [];
|
| 67 |
+
|
| 68 |
+
for (const detection of detections) {
|
| 69 |
+
let isDuplicate = false;
|
| 70 |
+
let duplicateIndex = -1;
|
| 71 |
+
let maxIoU = 0;
|
| 72 |
+
|
| 73 |
+
for (let i = 0; i < filteredDetections.length; ++i) {
|
| 74 |
+
const filteredDetection = filteredDetections[i];
|
| 75 |
+
const iou = calculateIoU(detection, filteredDetection);
|
| 76 |
+
if (iou > iouThreshold) {
|
| 77 |
+
isDuplicate = true;
|
| 78 |
+
if (iou > maxIoU) {
|
| 79 |
+
maxIoU = iou;
|
| 80 |
+
duplicateIndex = i;
|
| 81 |
+
}
|
| 82 |
+
}
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
if (!isDuplicate) {
|
| 86 |
+
filteredDetections.push(detection);
|
| 87 |
+
} else if (duplicateIndex !== -1 && detection.score > filteredDetections[duplicateIndex].score) {
|
| 88 |
+
filteredDetections[duplicateIndex] = detection;
|
| 89 |
+
}
|
| 90 |
+
}
|
| 91 |
+
|
| 92 |
+
return filteredDetections;
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
+
function calculateIoU(detection1, detection2) {
|
| 96 |
+
const xOverlap = Math.max(0, Math.min(detection1.x2, detection2.x2) - Math.max(detection1.x1, detection2.x1));
|
| 97 |
+
const yOverlap = Math.max(0, Math.min(detection1.y2, detection2.y2) - Math.max(detection1.y1, detection2.y1));
|
| 98 |
+
const overlapArea = xOverlap * yOverlap;
|
| 99 |
+
|
| 100 |
+
const area1 = (detection1.x2 - detection1.x1) * (detection1.y2 - detection1.y1);
|
| 101 |
+
const area2 = (detection2.x2 - detection2.x1) * (detection2.y2 - detection2.y1);
|
| 102 |
+
const unionArea = area1 + area2 - overlapArea;
|
| 103 |
+
|
| 104 |
+
return overlapArea / unionArea;
|
| 105 |
+
}
|
| 106 |
+
|
| 107 |
+
const filteredResults = removeDuplicates(results, iouThreshold);
|
| 108 |
+
|
| 109 |
+
// Display results
|
| 110 |
+
for (const { x1, x2, y1, y2, score, keypoints } of filteredResults) {
|
| 111 |
+
console.log(`Found person at [${x1}, ${y1}, ${x2}, ${y2}] with score ${score.toFixed(3)}`)
|
| 112 |
+
for (let i = 0; i < keypoints.length; i += 3) {
|
| 113 |
+
const label = model.config.id2label[Math.floor(i / 3)];
|
| 114 |
+
const [x, y, point_score] = keypoints.slice(i, i + 3);
|
| 115 |
+
if (point_score < pointThreshold) continue;
|
| 116 |
+
console.log(` - ${label}: (${x.toFixed(2)}, ${y.toFixed(2)}) with score ${point_score.toFixed(3)}`);
|
| 117 |
+
}
|
| 118 |
+
}
|
| 119 |
+
```
|
| 120 |
+
|
| 121 |
+
<details>
|
| 122 |
+
|
| 123 |
+
<summary>See example output</summary>
|
| 124 |
+
|
| 125 |
+
```
|
| 126 |
+
Found person at [533.1403350830078, 39.96531672477722, 645.8853149414062, 296.1657429695129] with score 0.739
|
| 127 |
+
- nose: (443.99, 91.98) with score 0.970
|
| 128 |
+
- left_eye: (449.84, 85.01) with score 0.968
|
| 129 |
+
- right_eye: (436.28, 86.54) with score 0.839
|
| 130 |
+
- left_ear: (458.69, 87.08) with score 0.822
|
| 131 |
+
- right_ear: (427.88, 89.20) with score 0.317
|
| 132 |
+
- left_shoulder: (471.29, 128.05) with score 0.991
|
| 133 |
+
- right_shoulder: (421.84, 127.22) with score 0.788
|
| 134 |
+
- left_elbow: (494.03, 174.09) with score 0.976
|
| 135 |
+
- right_elbow: (405.83, 162.81) with score 0.367
|
| 136 |
+
- left_wrist: (505.29, 232.06) with score 0.955
|
| 137 |
+
- right_wrist: (411.89, 213.05) with score 0.470
|
| 138 |
+
- left_hip: (469.48, 217.49) with score 0.978
|
| 139 |
+
- right_hip: (438.79, 216.48) with score 0.901
|
| 140 |
+
- left_knee: (474.03, 283.00) with score 0.957
|
| 141 |
+
- right_knee: (448.00, 287.90) with score 0.808
|
| 142 |
+
- left_ankle: (472.06, 339.67) with score 0.815
|
| 143 |
+
- right_ankle: (447.15, 340.44) with score 0.576
|
| 144 |
+
Found person at [0.03232002258300781, 57.89646775722503, 156.35095596313477, 370.9132190942764] with score 0.908
|
| 145 |
+
- nose: (60.48, 105.82) with score 0.975
|
| 146 |
+
- left_eye: (64.86, 100.59) with score 0.952
|
| 147 |
+
- right_eye: (55.12, 100.60) with score 0.855
|
| 148 |
+
- left_ear: (73.04, 101.96) with score 0.820
|
| 149 |
+
- right_ear: (51.07, 103.28) with score 0.482
|
| 150 |
+
- left_shoulder: (85.74, 137.77) with score 0.996
|
| 151 |
+
- right_shoulder: (42.04, 137.63) with score 0.988
|
| 152 |
+
- left_elbow: (101.10, 190.45) with score 0.988
|
| 153 |
+
- right_elbow: (25.75, 186.44) with score 0.937
|
| 154 |
+
- left_wrist: (115.93, 250.05) with score 0.975
|
| 155 |
+
- right_wrist: (7.39, 233.44) with score 0.918
|
| 156 |
+
- left_hip: (80.15, 242.20) with score 0.999
|
| 157 |
+
- right_hip: (52.69, 239.82) with score 0.999
|
| 158 |
+
- left_knee: (93.29, 326.00) with score 0.999
|
| 159 |
+
- right_knee: (57.42, 329.04) with score 0.998
|
| 160 |
+
- left_ankle: (100.24, 413.83) with score 0.992
|
| 161 |
+
- right_ankle: (50.47, 417.93) with score 0.988
|
| 162 |
+
Found person at [106.16920471191406, 8.419264698028565, 515.0135803222656, 530.6886708259583] with score 0.819
|
| 163 |
+
- nose: (134.03, 111.15) with score 0.921
|
| 164 |
+
- left_eye: (137.51, 100.95) with score 0.824
|
| 165 |
+
- right_eye: (131.82, 97.53) with score 0.489
|
| 166 |
+
- left_ear: (147.19, 92.96) with score 0.792
|
| 167 |
+
- left_shoulder: (188.28, 127.51) with score 0.993
|
| 168 |
+
- right_shoulder: (181.81, 149.32) with score 0.995
|
| 169 |
+
- left_elbow: (258.49, 199.10) with score 0.984
|
| 170 |
+
- right_elbow: (181.43, 251.27) with score 0.988
|
| 171 |
+
- left_wrist: (311.74, 257.93) with score 0.979
|
| 172 |
+
- right_wrist: (129.68, 284.38) with score 0.984
|
| 173 |
+
- left_hip: (267.43, 299.85) with score 1.000
|
| 174 |
+
- right_hip: (277.05, 307.50) with score 1.000
|
| 175 |
+
- left_knee: (232.15, 427.54) with score 0.999
|
| 176 |
+
- right_knee: (278.99, 453.09) with score 0.999
|
| 177 |
+
- left_ankle: (352.68, 457.89) with score 0.990
|
| 178 |
+
- right_ankle: (362.15, 554.69) with score 0.993
|
| 179 |
+
Found person at [425.3855133056641, 73.76281919479369, 640.6651306152344, 502.32841634750366] with score 0.876
|
| 180 |
+
- nose: (416.15, 149.68) with score 0.996
|
| 181 |
+
- left_eye: (430.34, 139.56) with score 0.984
|
| 182 |
+
- right_eye: (412.88, 142.56) with score 0.976
|
| 183 |
+
- left_ear: (446.59, 142.21) with score 0.843
|
| 184 |
+
- right_ear: (398.82, 144.52) with score 0.740
|
| 185 |
+
- left_shoulder: (436.54, 197.92) with score 0.999
|
| 186 |
+
- right_shoulder: (362.94, 210.20) with score 0.996
|
| 187 |
+
- left_elbow: (460.06, 293.80) with score 0.992
|
| 188 |
+
- right_elbow: (352.33, 262.09) with score 0.966
|
| 189 |
+
- left_wrist: (491.33, 364.20) with score 0.986
|
| 190 |
+
- right_wrist: (402.62, 272.23) with score 0.956
|
| 191 |
+
- left_hip: (429.79, 354.94) with score 0.999
|
| 192 |
+
- right_hip: (383.27, 372.77) with score 0.999
|
| 193 |
+
- left_knee: (461.07, 437.73) with score 0.998
|
| 194 |
+
- right_knee: (410.89, 522.05) with score 0.995
|
| 195 |
+
- left_ankle: (460.74, 552.53) with score 0.966
|
| 196 |
+
- right_ankle: (429.00, 560.54) with score 0.940
|
| 197 |
+
```
|
| 198 |
+
</details>
|