Update README.md
Browse files
README.md
CHANGED
|
@@ -3,4 +3,193 @@ library_name: transformers.js
|
|
| 3 |
tags:
|
| 4 |
- pose-estimation
|
| 5 |
license: agpl-3.0
|
| 6 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
tags:
|
| 4 |
- pose-estimation
|
| 5 |
license: agpl-3.0
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
YOLOv8n-pose with ONNX weights to be compatible with Transformers.js.
|
| 9 |
+
|
| 10 |
+
## Usage (Transformers.js)
|
| 11 |
+
|
| 12 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
|
| 13 |
+
```bash
|
| 14 |
+
npm i @xenova/transformers
|
| 15 |
+
```
|
| 16 |
+
|
| 17 |
+
**Example:** Perform pose-estimation w/ `Xenova/yolov8n-pose`.
|
| 18 |
+
|
| 19 |
+
```js
|
| 20 |
+
import { AutoModel, AutoProcessor, RawImage } from '@xenova/transformers';
|
| 21 |
+
|
| 22 |
+
// Load model and processor
|
| 23 |
+
const model_id = 'Xenova/yolov8n-pose';
|
| 24 |
+
const model = await AutoModel.from_pretrained(model_id);
|
| 25 |
+
const processor = await AutoProcessor.from_pretrained(model_id);
|
| 26 |
+
|
| 27 |
+
// Read image and run processor
|
| 28 |
+
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/football-match.jpg';
|
| 29 |
+
const image = await RawImage.read(url);
|
| 30 |
+
const { pixel_values } = await processor(image);
|
| 31 |
+
|
| 32 |
+
// Set thresholds
|
| 33 |
+
const threshold = 0.3; // Remove detections with low confidence
|
| 34 |
+
const iouThreshold = 0.5; // Used to remove duplicates
|
| 35 |
+
const pointThreshold = 0.3; // Hide uncertain points
|
| 36 |
+
|
| 37 |
+
// Predict bounding boxes and keypoints
|
| 38 |
+
const { output0 } = await model({ images: pixel_values });
|
| 39 |
+
|
| 40 |
+
// Post-process:
|
| 41 |
+
const permuted = output0[0].transpose(1, 0);
|
| 42 |
+
// `permuted` is a Tensor of shape [ 8400, 56 ]:
|
| 43 |
+
// - 8400 potential detections
|
| 44 |
+
// - 56 parameters for each box:
|
| 45 |
+
// - 4 for the bounding box dimensions (x-center, y-center, width, height)
|
| 46 |
+
// - 1 for the confidence score
|
| 47 |
+
// - 17 * 3 = 51 for the pose keypoints: 17 labels, each with (x, y, visibilitiy)
|
| 48 |
+
|
| 49 |
+
// Example code to format it nicely:
|
| 50 |
+
const results = [];
|
| 51 |
+
const [scaledHeight, scaledWidth] = pixel_values.dims.slice(-2);
|
| 52 |
+
for (const [xc, yc, w, h, score, ...keypoints] of permuted.tolist()) {
|
| 53 |
+
if (score < threshold) continue;
|
| 54 |
+
|
| 55 |
+
// Get pixel values, taking into account the original image size
|
| 56 |
+
const x1 = (xc - w / 2) / scaledWidth * image.width;
|
| 57 |
+
const y1 = (yc - h / 2) / scaledHeight * image.height;
|
| 58 |
+
const x2 = (xc + w / 2) / scaledWidth * image.width;
|
| 59 |
+
const y2 = (yc + h / 2) / scaledHeight * image.height;
|
| 60 |
+
results.push({ x1, x2, y1, y2, score, keypoints })
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
// Define helper functions
|
| 65 |
+
function removeDuplicates(detections, iouThreshold) {
|
| 66 |
+
const filteredDetections = [];
|
| 67 |
+
|
| 68 |
+
for (const detection of detections) {
|
| 69 |
+
let isDuplicate = false;
|
| 70 |
+
let duplicateIndex = -1;
|
| 71 |
+
let maxIoU = 0;
|
| 72 |
+
|
| 73 |
+
for (let i = 0; i < filteredDetections.length; ++i) {
|
| 74 |
+
const filteredDetection = filteredDetections[i];
|
| 75 |
+
const iou = calculateIoU(detection, filteredDetection);
|
| 76 |
+
if (iou > iouThreshold) {
|
| 77 |
+
isDuplicate = true;
|
| 78 |
+
if (iou > maxIoU) {
|
| 79 |
+
maxIoU = iou;
|
| 80 |
+
duplicateIndex = i;
|
| 81 |
+
}
|
| 82 |
+
}
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
if (!isDuplicate) {
|
| 86 |
+
filteredDetections.push(detection);
|
| 87 |
+
} else if (duplicateIndex !== -1 && detection.score > filteredDetections[duplicateIndex].score) {
|
| 88 |
+
filteredDetections[duplicateIndex] = detection;
|
| 89 |
+
}
|
| 90 |
+
}
|
| 91 |
+
|
| 92 |
+
return filteredDetections;
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
+
function calculateIoU(detection1, detection2) {
|
| 96 |
+
const xOverlap = Math.max(0, Math.min(detection1.x2, detection2.x2) - Math.max(detection1.x1, detection2.x1));
|
| 97 |
+
const yOverlap = Math.max(0, Math.min(detection1.y2, detection2.y2) - Math.max(detection1.y1, detection2.y1));
|
| 98 |
+
const overlapArea = xOverlap * yOverlap;
|
| 99 |
+
|
| 100 |
+
const area1 = (detection1.x2 - detection1.x1) * (detection1.y2 - detection1.y1);
|
| 101 |
+
const area2 = (detection2.x2 - detection2.x1) * (detection2.y2 - detection2.y1);
|
| 102 |
+
const unionArea = area1 + area2 - overlapArea;
|
| 103 |
+
|
| 104 |
+
return overlapArea / unionArea;
|
| 105 |
+
}
|
| 106 |
+
|
| 107 |
+
const filteredResults = removeDuplicates(results, iouThreshold);
|
| 108 |
+
|
| 109 |
+
// Display results
|
| 110 |
+
for (const { x1, x2, y1, y2, score, keypoints } of filteredResults) {
|
| 111 |
+
console.log(`Found person at [${x1}, ${y1}, ${x2}, ${y2}] with score ${score.toFixed(3)}`)
|
| 112 |
+
for (let i = 0; i < keypoints.length; i += 3) {
|
| 113 |
+
const label = model.config.id2label[Math.floor(i / 3)];
|
| 114 |
+
const [x, y, point_score] = keypoints.slice(i, i + 3);
|
| 115 |
+
if (point_score < pointThreshold) continue;
|
| 116 |
+
console.log(` - ${label}: (${x.toFixed(2)}, ${y.toFixed(2)}) with score ${point_score.toFixed(3)}`);
|
| 117 |
+
}
|
| 118 |
+
}
|
| 119 |
+
```
|
| 120 |
+
|
| 121 |
+
<details>
|
| 122 |
+
|
| 123 |
+
<summary>See example output</summary>
|
| 124 |
+
|
| 125 |
+
```
|
| 126 |
+
Found person at [536.1322975158691, 37.87850737571716, 645.2879905700684, 286.9420547962189] with score 0.791
|
| 127 |
+
- nose: (445.81, 87.11) with score 0.936
|
| 128 |
+
- left_eye: (450.90, 80.87) with score 0.976
|
| 129 |
+
- right_eye: (439.37, 81.31) with score 0.664
|
| 130 |
+
- left_ear: (460.76, 81.94) with score 0.945
|
| 131 |
+
- left_shoulder: (478.06, 126.18) with score 0.993
|
| 132 |
+
- right_shoulder: (420.69, 125.17) with score 0.469
|
| 133 |
+
- left_elbow: (496.96, 178.36) with score 0.976
|
| 134 |
+
- left_wrist: (509.41, 232.75) with score 0.892
|
| 135 |
+
- left_hip: (469.15, 215.80) with score 0.980
|
| 136 |
+
- right_hip: (433.73, 218.39) with score 0.794
|
| 137 |
+
- left_knee: (471.45, 278.44) with score 0.969
|
| 138 |
+
- right_knee: (439.23, 281.77) with score 0.701
|
| 139 |
+
- left_ankle: (474.88, 345.49) with score 0.913
|
| 140 |
+
- right_ankle: (441.99, 339.82) with score 0.664
|
| 141 |
+
Found person at [-0.15300750732421875, 59.96129276752472, 158.73897552490234, 369.92224643230435] with score 0.863
|
| 142 |
+
- nose: (57.30, 95.37) with score 0.960
|
| 143 |
+
- left_eye: (63.85, 89.48) with score 0.889
|
| 144 |
+
- right_eye: (53.59, 91.60) with score 0.909
|
| 145 |
+
- left_ear: (73.54, 92.67) with score 0.626
|
| 146 |
+
- right_ear: (50.12, 95.95) with score 0.674
|
| 147 |
+
- left_shoulder: (87.62, 132.72) with score 0.965
|
| 148 |
+
- right_shoulder: (39.72, 136.82) with score 0.986
|
| 149 |
+
- left_elbow: (108.17, 186.58) with score 0.857
|
| 150 |
+
- right_elbow: (21.47, 184.66) with score 0.951
|
| 151 |
+
- left_wrist: (113.36, 244.21) with score 0.822
|
| 152 |
+
- right_wrist: (8.04, 240.50) with score 0.915
|
| 153 |
+
- left_hip: (83.47, 234.43) with score 0.990
|
| 154 |
+
- right_hip: (47.29, 237.45) with score 0.994
|
| 155 |
+
- left_knee: (92.12, 324.78) with score 0.985
|
| 156 |
+
- right_knee: (50.70, 325.75) with score 0.991
|
| 157 |
+
- left_ankle: (101.13, 410.45) with score 0.933
|
| 158 |
+
- right_ankle: (49.62, 410.14) with score 0.954
|
| 159 |
+
Found person at [104.13589477539062, 20.16922025680542, 505.84068298339844, 522.6950127601624] with score 0.770
|
| 160 |
+
- nose: (132.51, 99.38) with score 0.693
|
| 161 |
+
- left_eye: (138.68, 89.00) with score 0.451
|
| 162 |
+
- left_ear: (145.60, 85.21) with score 0.766
|
| 163 |
+
- left_shoulder: (188.92, 133.25) with score 0.996
|
| 164 |
+
- right_shoulder: (163.12, 158.90) with score 0.985
|
| 165 |
+
- left_elbow: (263.01, 205.18) with score 0.991
|
| 166 |
+
- right_elbow: (181.52, 249.12) with score 0.949
|
| 167 |
+
- left_wrist: (315.65, 259.88) with score 0.964
|
| 168 |
+
- right_wrist: (125.19, 275.10) with score 0.891
|
| 169 |
+
- left_hip: (279.47, 294.29) with score 0.998
|
| 170 |
+
- right_hip: (266.84, 309.38) with score 0.997
|
| 171 |
+
- left_knee: (261.67, 416.57) with score 0.989
|
| 172 |
+
- right_knee: (256.66, 428.75) with score 0.982
|
| 173 |
+
- left_ankle: (322.92, 454.74) with score 0.805
|
| 174 |
+
- right_ankle: (339.15, 459.64) with score 0.780
|
| 175 |
+
Found person at [423.3617973327637, 72.75799512863159, 638.2988166809082, 513.1156357765198] with score 0.903
|
| 176 |
+
- nose: (417.19, 137.27) with score 0.992
|
| 177 |
+
- left_eye: (429.74, 127.59) with score 0.975
|
| 178 |
+
- right_eye: (409.83, 129.06) with score 0.961
|
| 179 |
+
- left_ear: (445.81, 133.82) with score 0.847
|
| 180 |
+
- right_ear: (399.09, 132.99) with score 0.711
|
| 181 |
+
- left_shoulder: (451.43, 195.71) with score 0.997
|
| 182 |
+
- right_shoulder: (372.58, 196.25) with score 0.995
|
| 183 |
+
- left_elbow: (463.89, 286.56) with score 0.991
|
| 184 |
+
- right_elbow: (351.35, 260.40) with score 0.978
|
| 185 |
+
- left_wrist: (488.70, 367.36) with score 0.986
|
| 186 |
+
- right_wrist: (395.69, 272.20) with score 0.973
|
| 187 |
+
- left_hip: (435.84, 345.96) with score 0.999
|
| 188 |
+
- right_hip: (380.21, 355.38) with score 0.999
|
| 189 |
+
- left_knee: (454.88, 456.63) with score 0.994
|
| 190 |
+
- right_knee: (395.82, 478.67) with score 0.992
|
| 191 |
+
- left_ankle: (453.75, 556.37) with score 0.889
|
| 192 |
+
- right_ankle: (402.35, 582.09) with score 0.872
|
| 193 |
+
|
| 194 |
+
```
|
| 195 |
+
</details>
|