Xenova HF staff commited on
Commit
a6b5301
·
verified ·
1 Parent(s): fa5da66

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +190 -1
README.md CHANGED
@@ -3,4 +3,193 @@ library_name: transformers.js
3
  tags:
4
  - pose-estimation
5
  license: agpl-3.0
6
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  tags:
4
  - pose-estimation
5
  license: agpl-3.0
6
+ ---
7
+
8
+ YOLOv8n-pose with ONNX weights to be compatible with Transformers.js.
9
+
10
+ ## Usage (Transformers.js)
11
+
12
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
13
+ ```bash
14
+ npm i @xenova/transformers
15
+ ```
16
+
17
+ **Example:** Perform pose-estimation w/ `Xenova/yolov8n-pose`.
18
+
19
+ ```js
20
+ import { AutoModel, AutoProcessor, RawImage } from '@xenova/transformers';
21
+
22
+ // Load model and processor
23
+ const model_id = 'Xenova/yolov8n-pose';
24
+ const model = await AutoModel.from_pretrained(model_id);
25
+ const processor = await AutoProcessor.from_pretrained(model_id);
26
+
27
+ // Read image and run processor
28
+ const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/football-match.jpg';
29
+ const image = await RawImage.read(url);
30
+ const { pixel_values } = await processor(image);
31
+
32
+ // Set thresholds
33
+ const threshold = 0.3; // Remove detections with low confidence
34
+ const iouThreshold = 0.5; // Used to remove duplicates
35
+ const pointThreshold = 0.3; // Hide uncertain points
36
+
37
+ // Predict bounding boxes and keypoints
38
+ const { output0 } = await model({ images: pixel_values });
39
+
40
+ // Post-process:
41
+ const permuted = output0[0].transpose(1, 0);
42
+ // `permuted` is a Tensor of shape [ 8400, 56 ]:
43
+ // - 8400 potential detections
44
+ // - 56 parameters for each box:
45
+ // - 4 for the bounding box dimensions (x-center, y-center, width, height)
46
+ // - 1 for the confidence score
47
+ // - 17 * 3 = 51 for the pose keypoints: 17 labels, each with (x, y, visibilitiy)
48
+
49
+ // Example code to format it nicely:
50
+ const results = [];
51
+ const [scaledHeight, scaledWidth] = pixel_values.dims.slice(-2);
52
+ for (const [xc, yc, w, h, score, ...keypoints] of permuted.tolist()) {
53
+ if (score < threshold) continue;
54
+
55
+ // Get pixel values, taking into account the original image size
56
+ const x1 = (xc - w / 2) / scaledWidth * image.width;
57
+ const y1 = (yc - h / 2) / scaledHeight * image.height;
58
+ const x2 = (xc + w / 2) / scaledWidth * image.width;
59
+ const y2 = (yc + h / 2) / scaledHeight * image.height;
60
+ results.push({ x1, x2, y1, y2, score, keypoints })
61
+ }
62
+
63
+
64
+ // Define helper functions
65
+ function removeDuplicates(detections, iouThreshold) {
66
+ const filteredDetections = [];
67
+
68
+ for (const detection of detections) {
69
+ let isDuplicate = false;
70
+ let duplicateIndex = -1;
71
+ let maxIoU = 0;
72
+
73
+ for (let i = 0; i < filteredDetections.length; ++i) {
74
+ const filteredDetection = filteredDetections[i];
75
+ const iou = calculateIoU(detection, filteredDetection);
76
+ if (iou > iouThreshold) {
77
+ isDuplicate = true;
78
+ if (iou > maxIoU) {
79
+ maxIoU = iou;
80
+ duplicateIndex = i;
81
+ }
82
+ }
83
+ }
84
+
85
+ if (!isDuplicate) {
86
+ filteredDetections.push(detection);
87
+ } else if (duplicateIndex !== -1 && detection.score > filteredDetections[duplicateIndex].score) {
88
+ filteredDetections[duplicateIndex] = detection;
89
+ }
90
+ }
91
+
92
+ return filteredDetections;
93
+ }
94
+
95
+ function calculateIoU(detection1, detection2) {
96
+ const xOverlap = Math.max(0, Math.min(detection1.x2, detection2.x2) - Math.max(detection1.x1, detection2.x1));
97
+ const yOverlap = Math.max(0, Math.min(detection1.y2, detection2.y2) - Math.max(detection1.y1, detection2.y1));
98
+ const overlapArea = xOverlap * yOverlap;
99
+
100
+ const area1 = (detection1.x2 - detection1.x1) * (detection1.y2 - detection1.y1);
101
+ const area2 = (detection2.x2 - detection2.x1) * (detection2.y2 - detection2.y1);
102
+ const unionArea = area1 + area2 - overlapArea;
103
+
104
+ return overlapArea / unionArea;
105
+ }
106
+
107
+ const filteredResults = removeDuplicates(results, iouThreshold);
108
+
109
+ // Display results
110
+ for (const { x1, x2, y1, y2, score, keypoints } of filteredResults) {
111
+ console.log(`Found person at [${x1}, ${y1}, ${x2}, ${y2}] with score ${score.toFixed(3)}`)
112
+ for (let i = 0; i < keypoints.length; i += 3) {
113
+ const label = model.config.id2label[Math.floor(i / 3)];
114
+ const [x, y, point_score] = keypoints.slice(i, i + 3);
115
+ if (point_score < pointThreshold) continue;
116
+ console.log(` - ${label}: (${x.toFixed(2)}, ${y.toFixed(2)}) with score ${point_score.toFixed(3)}`);
117
+ }
118
+ }
119
+ ```
120
+
121
+ <details>
122
+
123
+ <summary>See example output</summary>
124
+
125
+ ```
126
+ Found person at [536.1322975158691, 37.87850737571716, 645.2879905700684, 286.9420547962189] with score 0.791
127
+ - nose: (445.81, 87.11) with score 0.936
128
+ - left_eye: (450.90, 80.87) with score 0.976
129
+ - right_eye: (439.37, 81.31) with score 0.664
130
+ - left_ear: (460.76, 81.94) with score 0.945
131
+ - left_shoulder: (478.06, 126.18) with score 0.993
132
+ - right_shoulder: (420.69, 125.17) with score 0.469
133
+ - left_elbow: (496.96, 178.36) with score 0.976
134
+ - left_wrist: (509.41, 232.75) with score 0.892
135
+ - left_hip: (469.15, 215.80) with score 0.980
136
+ - right_hip: (433.73, 218.39) with score 0.794
137
+ - left_knee: (471.45, 278.44) with score 0.969
138
+ - right_knee: (439.23, 281.77) with score 0.701
139
+ - left_ankle: (474.88, 345.49) with score 0.913
140
+ - right_ankle: (441.99, 339.82) with score 0.664
141
+ Found person at [-0.15300750732421875, 59.96129276752472, 158.73897552490234, 369.92224643230435] with score 0.863
142
+ - nose: (57.30, 95.37) with score 0.960
143
+ - left_eye: (63.85, 89.48) with score 0.889
144
+ - right_eye: (53.59, 91.60) with score 0.909
145
+ - left_ear: (73.54, 92.67) with score 0.626
146
+ - right_ear: (50.12, 95.95) with score 0.674
147
+ - left_shoulder: (87.62, 132.72) with score 0.965
148
+ - right_shoulder: (39.72, 136.82) with score 0.986
149
+ - left_elbow: (108.17, 186.58) with score 0.857
150
+ - right_elbow: (21.47, 184.66) with score 0.951
151
+ - left_wrist: (113.36, 244.21) with score 0.822
152
+ - right_wrist: (8.04, 240.50) with score 0.915
153
+ - left_hip: (83.47, 234.43) with score 0.990
154
+ - right_hip: (47.29, 237.45) with score 0.994
155
+ - left_knee: (92.12, 324.78) with score 0.985
156
+ - right_knee: (50.70, 325.75) with score 0.991
157
+ - left_ankle: (101.13, 410.45) with score 0.933
158
+ - right_ankle: (49.62, 410.14) with score 0.954
159
+ Found person at [104.13589477539062, 20.16922025680542, 505.84068298339844, 522.6950127601624] with score 0.770
160
+ - nose: (132.51, 99.38) with score 0.693
161
+ - left_eye: (138.68, 89.00) with score 0.451
162
+ - left_ear: (145.60, 85.21) with score 0.766
163
+ - left_shoulder: (188.92, 133.25) with score 0.996
164
+ - right_shoulder: (163.12, 158.90) with score 0.985
165
+ - left_elbow: (263.01, 205.18) with score 0.991
166
+ - right_elbow: (181.52, 249.12) with score 0.949
167
+ - left_wrist: (315.65, 259.88) with score 0.964
168
+ - right_wrist: (125.19, 275.10) with score 0.891
169
+ - left_hip: (279.47, 294.29) with score 0.998
170
+ - right_hip: (266.84, 309.38) with score 0.997
171
+ - left_knee: (261.67, 416.57) with score 0.989
172
+ - right_knee: (256.66, 428.75) with score 0.982
173
+ - left_ankle: (322.92, 454.74) with score 0.805
174
+ - right_ankle: (339.15, 459.64) with score 0.780
175
+ Found person at [423.3617973327637, 72.75799512863159, 638.2988166809082, 513.1156357765198] with score 0.903
176
+ - nose: (417.19, 137.27) with score 0.992
177
+ - left_eye: (429.74, 127.59) with score 0.975
178
+ - right_eye: (409.83, 129.06) with score 0.961
179
+ - left_ear: (445.81, 133.82) with score 0.847
180
+ - right_ear: (399.09, 132.99) with score 0.711
181
+ - left_shoulder: (451.43, 195.71) with score 0.997
182
+ - right_shoulder: (372.58, 196.25) with score 0.995
183
+ - left_elbow: (463.89, 286.56) with score 0.991
184
+ - right_elbow: (351.35, 260.40) with score 0.978
185
+ - left_wrist: (488.70, 367.36) with score 0.986
186
+ - right_wrist: (395.69, 272.20) with score 0.973
187
+ - left_hip: (435.84, 345.96) with score 0.999
188
+ - right_hip: (380.21, 355.38) with score 0.999
189
+ - left_knee: (454.88, 456.63) with score 0.994
190
+ - right_knee: (395.82, 478.67) with score 0.992
191
+ - left_ankle: (453.75, 556.37) with score 0.889
192
+ - right_ankle: (402.35, 582.09) with score 0.872
193
+
194
+ ```
195
+ </details>