Wizounovziki commited on
Commit
d2408c2
·
1 Parent(s): 543d40d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - rouge
7
+ model-index:
8
+ - name: t5-base-devices-sum-ver2
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # t5-base-devices-sum-ver2
16
+
17
+ This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.1919
20
+ - Rouge1: 95.2959
21
+ - Rouge2: 72.5788
22
+ - Rougel: 95.292
23
+ - Rougelsum: 95.3437
24
+ - Gen Len: 4.5992
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 2e-05
44
+ - train_batch_size: 16
45
+ - eval_batch_size: 16
46
+ - seed: 42
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 10
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
55
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
56
+ | No log | 1.0 | 91 | 0.4308 | 87.5009 | 61.4165 | 87.6082 | 87.6628 | 4.3897 |
57
+ | No log | 2.0 | 182 | 0.2945 | 91.7111 | 66.9023 | 91.706 | 91.7348 | 4.4965 |
58
+ | No log | 3.0 | 273 | 0.2515 | 93.0416 | 68.8046 | 93.063 | 93.0907 | 4.516 |
59
+ | No log | 4.0 | 364 | 0.2259 | 94.2097 | 70.862 | 94.2438 | 94.2767 | 4.6283 |
60
+ | No log | 5.0 | 455 | 0.2148 | 94.7732 | 71.4693 | 94.78 | 94.8274 | 4.5936 |
61
+ | 0.4603 | 6.0 | 546 | 0.2030 | 95.0207 | 71.7789 | 95.0212 | 95.0887 | 4.5798 |
62
+ | 0.4603 | 7.0 | 637 | 0.1964 | 95.1482 | 72.3333 | 95.1651 | 95.202 | 4.6227 |
63
+ | 0.4603 | 8.0 | 728 | 0.1929 | 95.3279 | 72.551 | 95.3459 | 95.3972 | 4.5825 |
64
+ | 0.4603 | 9.0 | 819 | 0.1935 | 95.2413 | 72.5801 | 95.2372 | 95.3121 | 4.5992 |
65
+ | 0.4603 | 10.0 | 910 | 0.1919 | 95.2959 | 72.5788 | 95.292 | 95.3437 | 4.5992 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.18.0
71
+ - Pytorch 1.10.0+cu111
72
+ - Datasets 2.0.0
73
+ - Tokenizers 0.11.6