Upload folder stage1_qwen25_both_hf to stage_1/token_merge_plus_resampler/stage1_qwen25_both_hf
Browse files- stage_1/token_merge_plus_resampler/stage1_qwen25_both_hf/projector/projector.safetensors +3 -0
- stage_1/token_merge_plus_resampler/stage1_qwen25_both_hf/resampler/resampler.safetensors +3 -0
- stage_1/token_merge_plus_resampler/stage1_qwen25_both_hf/token_merger/merger.safetensors +3 -0
- stage_1/token_merge_plus_resampler/stage1_qwen25_both_hf/xtuner_config.py +252 -0
stage_1/token_merge_plus_resampler/stage1_qwen25_both_hf/projector/projector.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d844e6e365f6cb5d69687471a53f3f08d9ee1aca5456b681b31b2b9fc5d9e394
|
| 3 |
+
size 40384848
|
stage_1/token_merge_plus_resampler/stage1_qwen25_both_hf/resampler/resampler.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:18512111537ba6526fa1c1f7891e5ac14b7e549de381ef962efb319da11c9ccc
|
| 3 |
+
size 129956960
|
stage_1/token_merge_plus_resampler/stage1_qwen25_both_hf/token_merger/merger.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:86f24c13a9f8e7cc06aa2f8708df819386f9c6b9a6a0f10e716a8331f1282a9a
|
| 3 |
+
size 20784
|
stage_1/token_merge_plus_resampler/stage1_qwen25_both_hf/xtuner_config.py
ADDED
|
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
| 2 |
+
import torch
|
| 3 |
+
from mmengine.dataset import DefaultSampler
|
| 4 |
+
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
|
| 5 |
+
LoggerHook, ParamSchedulerHook)
|
| 6 |
+
from mmengine.visualization import Visualizer, WandbVisBackend
|
| 7 |
+
from mmengine.optim import AmpOptimWrapper, ConstantLR, LinearLR, CosineAnnealingLR
|
| 8 |
+
from torch.optim import AdamW
|
| 9 |
+
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
| 10 |
+
BitsAndBytesConfig, CLIPImageProcessor,
|
| 11 |
+
CLIPVisionModel)
|
| 12 |
+
|
| 13 |
+
from xtuner.dataset import LLaVADataset
|
| 14 |
+
from xtuner.dataset.collate_fns import default_collate_fn
|
| 15 |
+
from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory
|
| 16 |
+
from xtuner.engine.hooks import DatasetInfoHook, EvaluateChatHookResampler, HFCheckpointHook, ThroughputHook
|
| 17 |
+
from xtuner.engine.runner import TrainLoop
|
| 18 |
+
from xtuner.model.llava_no_longnet_simple_sampler import LLaVAModel
|
| 19 |
+
from xtuner.utils import PROMPT_TEMPLATE
|
| 20 |
+
|
| 21 |
+
#######################################################################
|
| 22 |
+
# PART 1 Settings #
|
| 23 |
+
#######################################################################
|
| 24 |
+
# Model
|
| 25 |
+
llm_name_or_path = 'Qwen/Qwen2.5-7B-Instruct'
|
| 26 |
+
# Data
|
| 27 |
+
data_path = '/mnt/bn/yuxuanwang/meilong/code/projects/efficient_foundation_wsi_llava/merged_dataset/stage1_morph2.json'
|
| 28 |
+
image_path_list = None
|
| 29 |
+
|
| 30 |
+
prompt_template = PROMPT_TEMPLATE.qwen_chat
|
| 31 |
+
|
| 32 |
+
# 长序列:保持 per_image_length == sample_num
|
| 33 |
+
max_length = 15836
|
| 34 |
+
per_image_length = 10240
|
| 35 |
+
sample_type = 'wsi' # 'wsi' or 'image'
|
| 36 |
+
|
| 37 |
+
# Scheduler & Optimizer (epoch-based)
|
| 38 |
+
batch_size = 1
|
| 39 |
+
accumulative_counts = 256 # 8 * 256 = 2048
|
| 40 |
+
dataloader_num_workers = 10
|
| 41 |
+
seed = 42
|
| 42 |
+
optim_type = AdamW
|
| 43 |
+
lr = 1e-3
|
| 44 |
+
betas = (0.9, 0.999)
|
| 45 |
+
weight_decay = 0.0 # 适度WD抑制漂移
|
| 46 |
+
max_norm = 1 # 更紧的梯度裁剪
|
| 47 |
+
|
| 48 |
+
# 以 epoch 为主
|
| 49 |
+
max_epochs = 2
|
| 50 |
+
warmup_ratio = 0.08 # 预热占比(相对 max_iters)
|
| 51 |
+
|
| 52 |
+
# Save
|
| 53 |
+
save_steps = 5120
|
| 54 |
+
save_total_limit = 8 # Maximum checkpoints to keep (-1 means unlimited)
|
| 55 |
+
|
| 56 |
+
# Evaluate the generation performance during the training
|
| 57 |
+
evaluation_freq = 512
|
| 58 |
+
SYSTEM = ''
|
| 59 |
+
evaluation_images = '/mnt/bn/xudong-va/meilong/datasets/Token_Compression/skcm_224x224_b20_t15/h5_files/TCGA-EB-A5UN-06Z-00-DX1.h5'
|
| 60 |
+
evaluation_inputs = ['Are the tumor cells organized in a lobulated pattern within the slide?']
|
| 61 |
+
|
| 62 |
+
#######################################################################
|
| 63 |
+
# PART 2 Model & Tokenizer & Image Processor #
|
| 64 |
+
#######################################################################
|
| 65 |
+
tokenizer = dict(
|
| 66 |
+
type=AutoTokenizer.from_pretrained,
|
| 67 |
+
pretrained_model_name_or_path=llm_name_or_path,
|
| 68 |
+
trust_remote_code=True,
|
| 69 |
+
padding_side='right')
|
| 70 |
+
|
| 71 |
+
bnb = dict(
|
| 72 |
+
type=BitsAndBytesConfig,
|
| 73 |
+
load_in_4bit=True,
|
| 74 |
+
load_in_8bit=False,
|
| 75 |
+
llm_int8_threshold=6.0,
|
| 76 |
+
llm_int8_has_fp16_weight=False,
|
| 77 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 78 |
+
bnb_4bit_use_double_quant=True,
|
| 79 |
+
bnb_4bit_quant_type="nf4",
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
model = dict(
|
| 83 |
+
type=LLaVAModel,
|
| 84 |
+
freeze_llm=True,
|
| 85 |
+
train_stage='1',
|
| 86 |
+
llm=dict(
|
| 87 |
+
type=AutoModelForCausalLM.from_pretrained,
|
| 88 |
+
pretrained_model_name_or_path=llm_name_or_path,
|
| 89 |
+
trust_remote_code=True,
|
| 90 |
+
torch_dtype=torch.bfloat16,
|
| 91 |
+
attn_implementation='flash_attention_2',
|
| 92 |
+
quantization_config=bnb
|
| 93 |
+
),
|
| 94 |
+
|
| 95 |
+
max_position_embeddings = None, # original 32000 +
|
| 96 |
+
enable_token_merge = True,
|
| 97 |
+
# 建议:前期用 resampler 更稳(也更省显存);如不需要可改回 False
|
| 98 |
+
use_resampler=True,
|
| 99 |
+
resampler_num_latents=100,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
#######################################################################
|
| 103 |
+
# PART 3 Dataset & Dataloader #
|
| 104 |
+
#######################################################################
|
| 105 |
+
llava_dataset = dict(
|
| 106 |
+
type=LLaVADataset,
|
| 107 |
+
data_path=data_path,
|
| 108 |
+
image_folder='',
|
| 109 |
+
image_path_list=image_path_list,
|
| 110 |
+
tokenizer=tokenizer,
|
| 111 |
+
dataset_map_fn=llava_map_fn,
|
| 112 |
+
template_map_fn=dict(type=template_map_fn_factory, template=prompt_template),
|
| 113 |
+
max_length=max_length,
|
| 114 |
+
per_image_length=per_image_length,
|
| 115 |
+
pad_image_to_square=False,
|
| 116 |
+
sample_num=per_image_length,
|
| 117 |
+
image_feature_prefix='/mnt/bn/xudong-va/meilong/datasets/Token_Compression',
|
| 118 |
+
image_feature_suffix='.h5',
|
| 119 |
+
identifier='_224x224_b20_t15',
|
| 120 |
+
unwanted_prefix_csv='/mnt/bn/yuxuanwang/meilong/code/projects/efficient_foundation_wsi_llava/merged_dataset/missing_slides3.csv',
|
| 121 |
+
sample_strategy='linspace', #use linspace
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
# cying: add: per_image_length=per_image_length,
|
| 126 |
+
|
| 127 |
+
train_dataloader = dict(
|
| 128 |
+
batch_size=batch_size,
|
| 129 |
+
num_workers=dataloader_num_workers,
|
| 130 |
+
pin_memory=True,
|
| 131 |
+
persistent_workers=True,
|
| 132 |
+
prefetch_factor=4,
|
| 133 |
+
dataset=llava_dataset,
|
| 134 |
+
sampler=dict(type=DefaultSampler, shuffle=True),
|
| 135 |
+
collate_fn=dict(type=default_collate_fn)
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
#######################################################################
|
| 141 |
+
# PART 4 Scheduler & Optimizer #
|
| 142 |
+
#######################################################################
|
| 143 |
+
# optimizer
|
| 144 |
+
optim_wrapper = dict(
|
| 145 |
+
type=AmpOptimWrapper,
|
| 146 |
+
optimizer=dict(type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
|
| 147 |
+
paramwise_cfg = dict(
|
| 148 |
+
norm_decay_mult=0.0,
|
| 149 |
+
bias_decay_mult=0.0,
|
| 150 |
+
paramwise_cfg=dict(
|
| 151 |
+
custom_keys={'^projector\\.': dict(lr_mult=1.0)},
|
| 152 |
+
# 关键:明确只收集 projector,其他丢弃
|
| 153 |
+
# 有些实现没有这个开关;那就用 EnsureProjectorInOptimHook 热修
|
| 154 |
+
),
|
| 155 |
+
),
|
| 156 |
+
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=True), # 遇到 NaN 立刻报错
|
| 157 |
+
accumulative_counts=accumulative_counts,
|
| 158 |
+
loss_scale='dynamic',
|
| 159 |
+
dtype='bfloat16',
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
param_scheduler = [
|
| 163 |
+
dict(
|
| 164 |
+
type=LinearLR,
|
| 165 |
+
start_factor=0.01, # 从 1% 的 lr 慢启动
|
| 166 |
+
by_epoch=True,
|
| 167 |
+
begin=0,
|
| 168 |
+
end=warmup_ratio * max_epochs,
|
| 169 |
+
convert_to_iter_based=True # 按 iter 计算
|
| 170 |
+
),
|
| 171 |
+
dict(
|
| 172 |
+
type=CosineAnnealingLR,
|
| 173 |
+
eta_min=0.0,
|
| 174 |
+
by_epoch=True,
|
| 175 |
+
begin=warmup_ratio * max_epochs,
|
| 176 |
+
end=max_epochs,
|
| 177 |
+
convert_to_iter_based=True
|
| 178 |
+
)
|
| 179 |
+
]
|
| 180 |
+
|
| 181 |
+
# train, val, test setting
|
| 182 |
+
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
|
| 183 |
+
|
| 184 |
+
#######################################################################
|
| 185 |
+
# PART 5 Runtime #
|
| 186 |
+
#######################################################################
|
| 187 |
+
# Log the dialogue periodically during the training process, optional
|
| 188 |
+
custom_hooks = [
|
| 189 |
+
dict(type=DatasetInfoHook, tokenizer=tokenizer),
|
| 190 |
+
dict(
|
| 191 |
+
type=EvaluateChatHookResampler,
|
| 192 |
+
tokenizer=tokenizer,
|
| 193 |
+
every_n_iters=evaluation_freq,
|
| 194 |
+
evaluation_inputs=evaluation_inputs,
|
| 195 |
+
evaluation_images=evaluation_images,
|
| 196 |
+
system=SYSTEM,
|
| 197 |
+
prompt_template=prompt_template),
|
| 198 |
+
dict(type = ThroughputHook)
|
| 199 |
+
]
|
| 200 |
+
|
| 201 |
+
# configure default hooks
|
| 202 |
+
default_hooks = dict(
|
| 203 |
+
# record the time of every iteration.
|
| 204 |
+
timer=dict(type=IterTimerHook),
|
| 205 |
+
# print log every 10 iterations.
|
| 206 |
+
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
|
| 207 |
+
# enable the parameter scheduler.
|
| 208 |
+
param_scheduler=dict(type=ParamSchedulerHook),
|
| 209 |
+
# save checkpoint per `save_steps`.
|
| 210 |
+
checkpoint=dict(
|
| 211 |
+
type=CheckpointHook,
|
| 212 |
+
by_epoch=False,
|
| 213 |
+
interval=save_steps,
|
| 214 |
+
max_keep_ckpts=save_total_limit),
|
| 215 |
+
# set sampler seed in distributed evrionment.
|
| 216 |
+
sampler_seed=dict(type=DistSamplerSeedHook),
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
# configure environment
|
| 220 |
+
env_cfg = dict(
|
| 221 |
+
# whether to enable cudnn benchmark
|
| 222 |
+
cudnn_benchmark=False,
|
| 223 |
+
# set multi process parameters
|
| 224 |
+
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
| 225 |
+
# set distributed parameters
|
| 226 |
+
dist_cfg=dict(backend='nccl'),
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
# visualizer = dict(
|
| 231 |
+
# type=Visualizer,
|
| 232 |
+
# vis_backends=[
|
| 233 |
+
# dict(type=WandbVisBackend, init_kwargs=dict(project='stage1_no_longnet_simple_resampler_projector100'))])
|
| 234 |
+
visualizer = None
|
| 235 |
+
# set log level
|
| 236 |
+
log_level = 'INFO'
|
| 237 |
+
|
| 238 |
+
# load from which checkpoint
|
| 239 |
+
load_from = None
|
| 240 |
+
|
| 241 |
+
# whether to resume training from the loaded checkpoint
|
| 242 |
+
resume = False
|
| 243 |
+
|
| 244 |
+
# Defaults to use random seed and disable `deterministic`
|
| 245 |
+
randomness = dict(seed=seed, deterministic=False)
|
| 246 |
+
|
| 247 |
+
# set log processor
|
| 248 |
+
log_processor = dict(
|
| 249 |
+
by_epoch=False,
|
| 250 |
+
window_size=1,
|
| 251 |
+
mean_pattern=r".*(loss|time|data_time|grad_norm|tflops).*",
|
| 252 |
+
)
|