Upload GPT
Browse files- README.md +199 -0
- config.json +17 -0
- hf_configuration.py +21 -0
- hf_modeling.py +291 -0
- pytorch_model.bin +3 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"GPT"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "hf_configuration.ExGPTConfig",
|
7 |
+
"AutoModel": "hf_modeling.GPT"
|
8 |
+
},
|
9 |
+
"block_size": 1024,
|
10 |
+
"model_type": "ExGPT",
|
11 |
+
"n_embd": 768,
|
12 |
+
"n_head": 12,
|
13 |
+
"n_layer": 12,
|
14 |
+
"torch_dtype": "float32",
|
15 |
+
"transformers_version": "4.48.3",
|
16 |
+
"vocab_size": 50304
|
17 |
+
}
|
hf_configuration.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
class ExGPTConfig(PretrainedConfig):
|
5 |
+
model_type = "ExGPT"
|
6 |
+
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
block_size: int = 1024, # Ctx length?
|
10 |
+
vocab_size: int = 50527, # 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
11 |
+
n_layer: int = 12,
|
12 |
+
n_head: int = 12,
|
13 |
+
n_embd: int = 768,
|
14 |
+
**kwargs
|
15 |
+
):
|
16 |
+
self.block_size = block_size
|
17 |
+
self.vocab_size = vocab_size
|
18 |
+
self.n_layer = n_layer
|
19 |
+
self.n_head = n_head
|
20 |
+
self.n_embd = n_embd
|
21 |
+
super().__init__(**kwargs)
|
hf_modeling.py
ADDED
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
import math
|
6 |
+
import inspect
|
7 |
+
import os
|
8 |
+
from hellaswag import render_example, iterate_examples
|
9 |
+
from tqdm import tqdm
|
10 |
+
from hf_configuration import ExGPTConfig
|
11 |
+
from transformers import PreTrainedModel
|
12 |
+
|
13 |
+
# ==================================================
|
14 |
+
|
15 |
+
class CausalSelfAttention(nn.Module):
|
16 |
+
|
17 |
+
def __init__(self, config):
|
18 |
+
super().__init__()
|
19 |
+
assert config.n_embd % config.n_head == 0
|
20 |
+
# key, query, value projection for all heads
|
21 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
22 |
+
# output projection
|
23 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
24 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1 # a flag
|
25 |
+
# regularization
|
26 |
+
self.n_head = config.n_head
|
27 |
+
self.n_embd = config.n_embd
|
28 |
+
# not really a 'bias', more of a mask
|
29 |
+
self.register_buffer('bias', torch.tril(torch.ones(config.block_size, config.block_size))
|
30 |
+
.view(1, 1, config.block_size, config.block_size)) # Batch, head, the table x2 รึ
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
B, T, C = x.size() # batch, seq len, embed dim
|
34 |
+
qkv = self.c_attn(x) # project first, reshape later for each heads
|
35 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
36 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
37 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
38 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
39 |
+
|
40 |
+
# begin the fk huge quadratic table
|
41 |
+
# att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
42 |
+
# att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
43 |
+
# att = F.softmax(att, dim = -1)
|
44 |
+
# y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
45 |
+
y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
|
46 |
+
|
47 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
48 |
+
# output projection
|
49 |
+
out = self.c_proj(y)
|
50 |
+
return out
|
51 |
+
|
52 |
+
class MLP(nn.Module):
|
53 |
+
"change it to SwiGLU"
|
54 |
+
def __init__(self, config):
|
55 |
+
super().__init__()
|
56 |
+
self.gate = nn.Linear(config.n_embd, 4 * config.n_embd)
|
57 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
58 |
+
self.silu = nn.SiLU()
|
59 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
60 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1 # a flag
|
61 |
+
|
62 |
+
def forward(self, x):
|
63 |
+
# x = self.c_fc(x)
|
64 |
+
# x = self.gelu(x)
|
65 |
+
# x = self.c_proj(x)
|
66 |
+
x = self.c_proj(self.silu(self.c_fc(x) * self.gate(x)))
|
67 |
+
return x
|
68 |
+
|
69 |
+
class Block(nn.Module):
|
70 |
+
def __init__(self, config):
|
71 |
+
super().__init__()
|
72 |
+
self.ln_1 = nn.RMSNorm(config.n_embd)
|
73 |
+
self.attn = CausalSelfAttention(config)
|
74 |
+
self.ln_2 = nn.RMSNorm(config.n_embd)
|
75 |
+
self.mlp = MLP(config)
|
76 |
+
|
77 |
+
def forward(self, x):
|
78 |
+
x = x + self.attn(self.ln_1(x))
|
79 |
+
x = x + self.mlp(self.ln_2(x))
|
80 |
+
return x
|
81 |
+
|
82 |
+
class GPT(PreTrainedModel):
|
83 |
+
|
84 |
+
def __init__(self, config):
|
85 |
+
super().__init__(config)
|
86 |
+
self.config = config
|
87 |
+
|
88 |
+
self.transformer = nn.ModuleDict(dict(
|
89 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
90 |
+
wpe = nn.Embedding(config.block_size, config.n_embd), # Learned positional embedding
|
91 |
+
h = nn.ModuleList(Block(config) for _ in range(config.n_layer)),
|
92 |
+
ln_f = nn.RMSNorm(config.n_embd),
|
93 |
+
))
|
94 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
95 |
+
|
96 |
+
# Weight sharing scheme
|
97 |
+
self.transformer.wte.weight = self.lm_head.weight # GPT2/transformers is all you need's style
|
98 |
+
# Worse trainging loss though. From my observation
|
99 |
+
|
100 |
+
# init params
|
101 |
+
# Apply fn recursively to every submodule (as returned by .children()) as well as self.
|
102 |
+
self.apply(self._init_weights)
|
103 |
+
|
104 |
+
def _init_weights(self, module): # iterate over each module เลยสินะ
|
105 |
+
if isinstance(module, nn.Linear):
|
106 |
+
std = 0.02
|
107 |
+
if hasattr(module, 'NANOGPT_SCALE_INIT'): # if there is the flag
|
108 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
109 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=std) # typicall, std is 1/sqrt(feature)
|
110 |
+
if module.bias is not None:
|
111 |
+
torch.nn.init.zeros_(module.bias)
|
112 |
+
elif isinstance(module, nn.Embedding):
|
113 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
114 |
+
|
115 |
+
def forward(self, idx, target=None):
|
116 |
+
# idx is of shape (B, T)
|
117 |
+
B, T = idx.size()
|
118 |
+
assert T <= self.config.block_size, f"Cannot forward a sequence of length {T}, blocksize is only {self.config.block_size}"
|
119 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
120 |
+
tok_emb = self.transformer.wte(idx)
|
121 |
+
|
122 |
+
# with torch.autocast(device_type=device, enabled=False):
|
123 |
+
pos_emb = self.transformer.wpe(pos)
|
124 |
+
x = tok_emb + pos_emb
|
125 |
+
# forward the block of the transformer
|
126 |
+
for block in self.transformer.h:
|
127 |
+
x = block(x)
|
128 |
+
# forward the final layernorm and the classifier
|
129 |
+
x = self.transformer.ln_f(x)
|
130 |
+
loss = None
|
131 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
132 |
+
if target is not None:
|
133 |
+
loss = F.cross_entropy(logits.view(-1,logits.size(-1)), target.view(-1)) # view -1 to flatten B,T dim to B*T for target, and logits.view(-1,logits.size(-1)) to get logit into shape B*T, vocab
|
134 |
+
return logits, loss
|
135 |
+
# Typo แดกโลก
|
136 |
+
|
137 |
+
@classmethod
|
138 |
+
def from_pretrained(cls, model_type):
|
139 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
140 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
141 |
+
from transformers import GPT2LMHeadModel
|
142 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
143 |
+
|
144 |
+
# n_layer, n_head and n_embd are determined from model_type
|
145 |
+
config_args = {
|
146 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
147 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
148 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
149 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
150 |
+
}[model_type]
|
151 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
152 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
153 |
+
# create a from-scratch initialized minGPT model
|
154 |
+
config = GPTConfig(**config_args)
|
155 |
+
model = GPT(config)
|
156 |
+
sd = model.state_dict()
|
157 |
+
sd_keys = sd.keys()
|
158 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
159 |
+
|
160 |
+
# init a huggingface/transformers model
|
161 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
162 |
+
sd_hf = model_hf.state_dict()
|
163 |
+
|
164 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
165 |
+
sd_keys_hf = sd_hf.keys()
|
166 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
167 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
168 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
169 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
170 |
+
# this means that we have to transpose these weights when we import them
|
171 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
172 |
+
for k in sd_keys_hf:
|
173 |
+
if any(k.endswith(w) for w in transposed):
|
174 |
+
# special treatment for the Conv1D weights we need to transpose
|
175 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
176 |
+
with torch.no_grad():
|
177 |
+
sd[k].copy_(sd_hf[k].t())
|
178 |
+
else:
|
179 |
+
# vanilla copy over the other parameters
|
180 |
+
assert sd_hf[k].shape == sd[k].shape
|
181 |
+
with torch.no_grad():
|
182 |
+
sd[k].copy_(sd_hf[k])
|
183 |
+
|
184 |
+
return model
|
185 |
+
|
186 |
+
def configure_optimizers(self, weight_decay, learning_rate, device):
|
187 |
+
# start wit all of the candidate parameters (that require grad)
|
188 |
+
param_dict = {pn: p for pn, p in self.named_parameters()}
|
189 |
+
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
|
190 |
+
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
|
191 |
+
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorm don't.
|
192 |
+
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
|
193 |
+
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
|
194 |
+
optim_groups = [
|
195 |
+
{'params': decay_params, 'weight_decay': weight_decay},
|
196 |
+
{'params': nodecay_params, 'weight_decay': 0.0}
|
197 |
+
]
|
198 |
+
num_decay_params = sum(p.numel() for p in decay_params)
|
199 |
+
num_nodecay_params = sum(p.numel() for p in nodecay_params)
|
200 |
+
print(f"num decayed parameter tensor: {len(decay_params)}, with {num_decay_params:,} paramters")
|
201 |
+
print(f"num non-decayed parameter tensor: {len(nodecay_params)}, with {num_nodecay_params:,} paramters")
|
202 |
+
# Create AdamW optimizer and use fused version if it is available
|
203 |
+
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
|
204 |
+
use_fused = fused_available and 'cuda' in device
|
205 |
+
print(f"using fused AdamW: {use_fused}")
|
206 |
+
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused)
|
207 |
+
return optimizer
|
208 |
+
|
209 |
+
# ===============================================================================================
|
210 |
+
num_return_sequences = 5
|
211 |
+
max_length = 30
|
212 |
+
|
213 |
+
# =================================================================================================
|
214 |
+
import tiktoken
|
215 |
+
import numpy as np
|
216 |
+
|
217 |
+
def load_tokens(filename):
|
218 |
+
npt = np.load(filename)
|
219 |
+
ptt = torch.tensor(npt, dtype=torch.long)
|
220 |
+
return ptt
|
221 |
+
|
222 |
+
class DataLoaderLite:
|
223 |
+
def __init__(self, B, T, process_rank, num_processes, split):
|
224 |
+
self.B = B
|
225 |
+
self.T = T
|
226 |
+
self.process_rank = process_rank
|
227 |
+
self.num_processes = num_processes
|
228 |
+
assert split in {'train', 'val'}
|
229 |
+
|
230 |
+
# get the shard filename
|
231 |
+
data_root = "edu_fineweb10B"
|
232 |
+
shards = os.listdir(data_root)
|
233 |
+
shards = [s for s in shards if split in s]
|
234 |
+
shards = sorted(shards)
|
235 |
+
shards = [os.path.join(data_root, s) for s in shards]
|
236 |
+
self.shards = shards
|
237 |
+
assert len(shards) > 0, f"no shards found in the split {split}"
|
238 |
+
if master_process:
|
239 |
+
print(f"found {len(shards)} shards for split {split}")
|
240 |
+
|
241 |
+
# state
|
242 |
+
# self.current_position = 0
|
243 |
+
# We wanna stride out dall the processes
|
244 |
+
# self.current_shard = 0
|
245 |
+
# self.tokens = load_tokens(self.shards[self.current_shard])
|
246 |
+
# self.current_position = self.B * self.T * self.process_rank
|
247 |
+
self.reset() # reset take care of the trouble
|
248 |
+
|
249 |
+
def reset(self):
|
250 |
+
# state, init at shard zero
|
251 |
+
self.current_shard = 0
|
252 |
+
self.tokens = load_tokens(self.shards[self.current_shard])
|
253 |
+
self.current_position = self.B * self.T * self.process_rank
|
254 |
+
|
255 |
+
def next_batch(self):
|
256 |
+
B, T = self.B, self.T
|
257 |
+
buf = self.tokens[self.current_position:self.current_position+B*T+1]
|
258 |
+
x = (buf[:-1]).view(B, T) # input
|
259 |
+
y = (buf[1:]).view(B, T) # target
|
260 |
+
|
261 |
+
# advance the position in the tensor
|
262 |
+
# self.current_position += B*T
|
263 |
+
self.current_position += B * T * self.num_processes
|
264 |
+
if self.current_position + (B * T * self.num_processes + 1) > len(self.tokens): # When we run out of token in a chard, we advance to the next shard
|
265 |
+
self.current_shard = (self.current_shard + 1) % len(self.shards)
|
266 |
+
self.tokens = load_tokens(self.shards[self.current_shard])
|
267 |
+
self.current_position = B * T * self.process_rank
|
268 |
+
return x, y
|
269 |
+
|
270 |
+
# -----------------------------------------------------------------------------
|
271 |
+
# helper function for HellaSwag eval
|
272 |
+
# takes tokens, mask, and logits, returns the index of the completion with the lowest loss
|
273 |
+
|
274 |
+
def get_most_likely_row(tokens, mask, logits):
|
275 |
+
# evaluate the autoregressive loss at all positions
|
276 |
+
shift_logits = (logits[..., :-1, :]).contiguous()
|
277 |
+
shift_tokens = (tokens[..., 1:]).contiguous()
|
278 |
+
flat_shift_logits = shift_logits.view(-1, shift_logits.size(-1))
|
279 |
+
flat_shift_tokens = shift_tokens.view(-1)
|
280 |
+
shift_losses = F.cross_entropy(flat_shift_logits, flat_shift_tokens, reduction='none')
|
281 |
+
shift_losses = shift_losses.view(tokens.size(0), -1)
|
282 |
+
# now get the average loss just for the completion region (where mask == 1), in each row
|
283 |
+
shift_mask = (mask[..., 1:]).contiguous() # we must shift mask, so we start at the last prompt token
|
284 |
+
masked_shift_losses = shift_losses * shift_mask
|
285 |
+
# sum and divide by the number of 1s in the mask
|
286 |
+
sum_loss = masked_shift_losses.sum(dim=1)
|
287 |
+
avg_loss = sum_loss / shift_mask.sum(dim=1)
|
288 |
+
# now we have a loss for each of the 4 completions
|
289 |
+
# the one with the lowest loss should be the most likely
|
290 |
+
pred_norm = avg_loss.argmin().item()
|
291 |
+
return pred_norm
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df3ca80a6243fa9c565c117bfba39515c188972a61e7754f5fa9ea7d32c75f70
|
3 |
+
size 661604817
|