File size: 8,044 Bytes
f3b0a90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import torch
import torch.nn as nn
from torchvision.ops.misc import Conv2dNormActivation

from .helpers.utils import make_divisible
from transformers.modeling_utils import PreTrainedModel
from transformers.configuration_utils import PretrainedConfig


def initialize_weights(m):
    if isinstance(m, nn.Conv2d):
        nn.init.kaiming_normal_(m.weight, mode="fan_out")
        if m.bias is not None:
            nn.init.zeros_(m.bias)
    elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm, nn.LayerNorm)):
        nn.init.ones_(m.weight)
        nn.init.zeros_(m.bias)
    elif isinstance(m, nn.Linear):
        nn.init.normal_(m.weight, 0, 0.01)
        if m.bias is not None:
            nn.init.zeros_(m.bias)


class Block(nn.Module):
    def __init__(self, in_channels, out_channels, expansion_rate, stride):
        super().__init__()
        exp_channels = make_divisible(in_channels * expansion_rate, 8)

        # create the three factorized convs that make up the inverted bottleneck block
        exp_conv = Conv2dNormActivation(
            in_channels,
            exp_channels,
            kernel_size=1,
            stride=1,
            norm_layer=nn.BatchNorm2d,
            activation_layer=nn.ReLU,
            inplace=False,
        )

        # depthwise convolution with possible stride
        depth_conv = Conv2dNormActivation(
            exp_channels,
            exp_channels,
            kernel_size=3,
            stride=stride,
            padding=1,
            groups=exp_channels,
            norm_layer=nn.BatchNorm2d,
            activation_layer=nn.ReLU,
            inplace=False,
        )

        proj_conv = Conv2dNormActivation(
            exp_channels,
            out_channels,
            kernel_size=1,
            stride=1,
            norm_layer=nn.BatchNorm2d,
            activation_layer=None,
            inplace=False,
        )
        self.after_block_activation = nn.ReLU()

        if in_channels == out_channels:
            self.use_shortcut = True
            if stride == 1 or stride == (1, 1):
                self.shortcut = nn.Sequential()
            else:
                # average pooling required for shortcut
                self.shortcut = nn.Sequential(
                    nn.AvgPool2d(kernel_size=3, stride=stride, padding=1),
                    nn.Sequential(),
                )
        else:
            self.use_shortcut = False

        self.block = nn.Sequential(exp_conv, depth_conv, proj_conv)

    def forward(self, x):
        if self.use_shortcut:
            x = self.block(x) + self.shortcut(x)
        else:
            x = self.block(x)
        x = self.after_block_activation(x)
        return x


class NetworkConfig(PretrainedConfig):
    def __init__(
        self,
        n_classes=10,
        in_channels=1,
        base_channels=32,
        channels_multiplier=2.3,
        expansion_rate=3.0,
        n_blocks=(3, 2, 1),
        strides=dict(b2=(1, 1), b3=(1, 2), b4=(2, 1)),
        add_feats=False,
        *args,
        **kwargs,
    ):
        super().__init__(*args, **kwargs)
        self.n_classes = n_classes
        self.in_channels = in_channels
        self.base_channels = base_channels
        self.channels_multiplier = channels_multiplier
        self.expansion_rate = expansion_rate
        self.n_blocks = n_blocks
        self.strides = strides
        self.add_feats = add_feats


class Network(PreTrainedModel):
    config_class = NetworkConfig

    def __init__(self, config):
        super().__init__(config)
        n_classes = config.n_classes
        in_channels = config.in_channels
        base_channels = config.base_channels
        channels_multiplier = config.channels_multiplier
        expansion_rate = config.expansion_rate
        n_blocks = config.n_blocks
        strides = config.strides
        n_stages = len(n_blocks)

        self.add_feats = config.add_feats

        base_channels = make_divisible(base_channels, 8)
        channels_per_stage = [base_channels] + [
            make_divisible(base_channels * channels_multiplier**stage_id, 8)
            for stage_id in range(n_stages)
        ]
        self.total_block_count = 0

        self.in_c = nn.Sequential(
            Conv2dNormActivation(
                in_channels,
                channels_per_stage[0] // 4,
                activation_layer=torch.nn.ReLU,
                kernel_size=3,
                stride=2,
                inplace=False,
            ),
            Conv2dNormActivation(
                channels_per_stage[0] // 4,
                channels_per_stage[0],
                activation_layer=torch.nn.ReLU,
                kernel_size=3,
                stride=2,
                inplace=False,
            ),
        )

        self.stages = nn.Sequential()
        for stage_id in range(n_stages):
            stage = self._make_stage(
                channels_per_stage[stage_id],
                channels_per_stage[stage_id + 1],
                n_blocks[stage_id],
                strides=strides,
                expansion_rate=expansion_rate,
            )
            self.stages.add_module(f"s{stage_id + 1}", stage)

        ff_list = []
        ff_list += [
            nn.Conv2d(
                channels_per_stage[-1],
                n_classes,
                kernel_size=(1, 1),
                stride=(1, 1),
                padding=0,
                bias=False,
            ),
            nn.BatchNorm2d(n_classes),
        ]

        ff_list.append(nn.AdaptiveAvgPool2d((1, 1)))

        self.feed_forward = nn.Sequential(*ff_list)

        self.apply(initialize_weights)

    def _make_stage(self, in_channels, out_channels, n_blocks, strides, expansion_rate):
        stage = nn.Sequential()
        for index in range(n_blocks):
            block_id = self.total_block_count + 1
            bname = f"b{block_id}"
            self.total_block_count = self.total_block_count + 1
            if bname in strides:
                stride = strides[bname]
            else:
                stride = (1, 1)

            block = self._make_block(
                in_channels, out_channels, stride=stride, expansion_rate=expansion_rate
            )
            stage.add_module(bname, block)

            in_channels = out_channels
        return stage

    def _make_block(self, in_channels, out_channels, stride, expansion_rate):

        block = Block(in_channels, out_channels, expansion_rate, stride)
        return block

    def _forward_conv(self, x):
        x = self.in_c(x)
        x = self.stages(x)
        return x

    def forward(self, x):
        y = self._forward_conv(x)
        x = self.feed_forward(y)
        logits = x.squeeze(2).squeeze(2)
        if self.add_feats:
            return logits, y
        else:
            return logits


def get_model(
    n_classes=10,
    in_channels=1,
    base_channels=32,
    channels_multiplier=2.3,
    expansion_rate=3.0,
    n_blocks=(3, 2, 1),
    strides=None,
    add_feats=False,
):
    """
    @param n_classes: number of the classes to predict
    @param in_channels: input channels to the network, for audio it is by default 1
    @param base_channels: number of channels after in_conv
    @param channels_multiplier: controls the increase in the width of the network after each stage
    @param expansion_rate: determines the expansion rate in inverted bottleneck blocks
    @param n_blocks: number of blocks that should exist in each stage
    @param strides: default value set below
    @return: full neural network model based on the specified configs
    """

    if strides is None:
        strides = dict(b2=(1, 1), b3=(1, 2), b4=(2, 1))

    model_config = {
        "n_classes": n_classes,
        "in_channels": in_channels,
        "base_channels": base_channels,
        "channels_multiplier": channels_multiplier,
        "expansion_rate": expansion_rate,
        "n_blocks": n_blocks,
        "strides": strides,
        "add_feats": add_feats,
    }

    m = Network(NetworkConfig(**model_config))
    return m