ironrock commited on
Commit
0c46cdd
·
verified ·
1 Parent(s): 087f50b

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +72 -41
README.md CHANGED
@@ -1,70 +1,101 @@
1
  ---
2
- license: apache-2.0
3
- library_name: peft
4
  tags:
5
- - trl
6
- - sft
7
- - generated_from_trainer
8
  base_model: mistralai/Mistral-7B-Instruct-v0.2
9
- datasets:
10
- - generator
11
  model-index:
12
- - name: WeniGPT-Agents-Mistral-1.0.2-SFT
13
  results: []
 
14
  ---
15
 
16
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
- should probably proofread and complete it, then remove this comment. -->
18
 
19
- # WeniGPT-Agents-Mistral-1.0.2-SFT
 
20
 
21
- This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the generator dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 1.2060
24
 
25
- ## Model description
26
 
27
- More information needed
28
 
29
- ## Intended uses & limitations
30
 
31
- More information needed
32
 
33
- ## Training and evaluation data
 
 
 
 
34
 
35
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
- ## Training procedure
 
 
 
 
 
 
 
 
38
 
39
  ### Training hyperparameters
40
 
41
  The following hyperparameters were used during training:
42
  - learning_rate: 0.0002
43
- - train_batch_size: 2
44
- - eval_batch_size: 2
45
- - seed: 42
46
- - distributed_type: multi-GPU
47
- - num_devices: 4
48
  - gradient_accumulation_steps: 2
 
49
  - total_train_batch_size: 16
50
- - total_eval_batch_size: 8
51
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
- - lr_scheduler_type: linear
53
- - lr_scheduler_warmup_ratio: 0.03
54
- - training_steps: 78
55
- - mixed_precision_training: Native AMP
56
 
57
  ### Training results
58
 
59
- | Training Loss | Epoch | Step | Validation Loss |
60
- |:-------------:|:-----:|:----:|:---------------:|
61
- | 0.7478 | 1.89 | 50 | 1.1495 |
62
-
63
-
64
  ### Framework versions
65
 
66
- - PEFT 0.10.0
67
- - Transformers 4.38.2
68
- - Pytorch 2.1.0+cu118
69
- - Datasets 2.18.0
70
- - Tokenizers 0.15.2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ library_name: "trl"
4
  tags:
5
+ - SFT
6
+ - WeniGPT
 
7
  base_model: mistralai/Mistral-7B-Instruct-v0.2
 
 
8
  model-index:
9
+ - name: Weni/WeniGPT-Agents-Mistral-1.0.2-SFT
10
  results: []
11
+ language: ['pt']
12
  ---
13
 
14
+ # Weni/WeniGPT-Agents-Mistral-1.0.2-SFT
 
15
 
16
+ This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2] on the dataset Weni/wenigpt-agent-1.4.0 with the SFT trainer. It is part of the WeniGPT project for [Weni](https://weni.ai/).
17
+ Description: Experiment with SFT and a new tokenizer configuration for chat template of mistral
18
 
 
19
  It achieves the following results on the evaluation set:
20
+ {'eval_loss': 1.2059792280197144, 'eval_runtime': 7.1429, 'eval_samples_per_second': 6.44, 'eval_steps_per_second': 0.84, 'epoch': 2.94}
21
 
22
+ ## Intended uses & limitations
23
 
24
+ This model has not been trained to avoid specific intructions.
25
 
26
+ ## Training procedure
27
 
28
+ Finetuning was done on the model mistralai/Mistral-7B-Instruct-v0.2 with the following prompt:
29
 
30
+ ```
31
+ ---------------------
32
+ System_prompt:
33
+ Agora você se chama {name}, você é {occupation} e seu objetivo é {chatbot_goal}. O adjetivo que mais define a sua personalidade é {adjective} e você se comporta da seguinte forma:
34
+ {instructions_formatted}
35
 
36
+ {context_statement}
37
+
38
+ Lista de requisitos:
39
+ - Responda de forma natural, mas nunca fale sobre um assunto fora do contexto.
40
+ - Nunca traga informações do seu próprio conhecimento.
41
+ - Repito é crucial que você responda usando apenas informações do contexto.
42
+ - Nunca mencione o contexto fornecido.
43
+ - Nunca mencione a pergunta fornecida.
44
+ - Gere a resposta mais útil possível para a pergunta usando informações do conexto acima.
45
+ - Nunca elabore sobre o porque e como você fez a tarefa, apenas responda.
46
+
47
+
48
+ ---------------------
49
+ Question:
50
+ {question}
51
 
52
+
53
+ ---------------------
54
+ Response:
55
+ {answer}
56
+
57
+
58
+ ---------------------
59
+
60
+ ```
61
 
62
  ### Training hyperparameters
63
 
64
  The following hyperparameters were used during training:
65
  - learning_rate: 0.0002
66
+ - per_device_train_batch_size: 2
67
+ - per_device_eval_batch_size: 2
 
 
 
68
  - gradient_accumulation_steps: 2
69
+ - num_gpus: 4
70
  - total_train_batch_size: 16
71
+ - optimizer: AdamW
72
+ - lr_scheduler_type: cosine
73
+ - num_steps: 78
74
+ - quantization_type: bitsandbytes
75
+ - LoRA: ("\n - bits: 4\n - use_exllama: True\n - device_map: auto\n - use_cache: False\n - lora_r: 128\n - lora_alpha: 256\n - lora_dropout: 0.05\n - bias: none\n - target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj']\n - task_type: CAUSAL_LM",)
 
76
 
77
  ### Training results
78
 
 
 
 
 
 
79
  ### Framework versions
80
 
81
+ - transformers==4.38.2
82
+ - datasets==2.18.0
83
+ - peft==0.10.0
84
+ - safetensors==0.4.2
85
+ - evaluate==0.4.1
86
+ - bitsandbytes==0.43
87
+ - huggingface_hub==0.22.2
88
+ - seqeval==1.2.2
89
+ - optimum==1.18.1
90
+ - auto-gptq==0.7.1
91
+ - gpustat==1.1.1
92
+ - deepspeed==0.14.0
93
+ - wandb==0.16.6
94
+ - trl==0.8.1
95
+ - accelerate==0.29.2
96
+ - coloredlogs==15.0.1
97
+ - traitlets==5.14.2
98
+ - autoawq@https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.4/autoawq-0.2.4+cu118-cp310-cp310-linux_x86_64.whl
99
+
100
+ ### Hardware
101
+ - Cloud provided: runpod.io