hyungjoochae commited on
Commit
0f2d6f7
·
verified ·
1 Parent(s): 4d62c8d

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-VL-3B-Instruct-AWQ
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.0
adapter_config.json ADDED
@@ -0,0 +1,279 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen2.5-VL-3B-Instruct-AWQ",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.0,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "model.layers.11.self_attn.o_proj",
24
+ "model.layers.2.mlp.gate_proj",
25
+ "model.layers.4.mlp.down_proj",
26
+ "model.layers.34.self_attn.q_proj",
27
+ "model.layers.15.self_attn.k_proj",
28
+ "model.layers.4.self_attn.q_proj",
29
+ "model.layers.8.mlp.gate_proj",
30
+ "model.layers.28.self_attn.k_proj",
31
+ "model.layers.2.mlp.down_proj",
32
+ "model.layers.13.self_attn.o_proj",
33
+ "model.layers.17.mlp.up_proj",
34
+ "model.layers.21.mlp.gate_proj",
35
+ "model.layers.12.self_attn.q_proj",
36
+ "model.layers.15.mlp.down_proj",
37
+ "model.layers.18.mlp.gate_proj",
38
+ "model.layers.3.self_attn.k_proj",
39
+ "model.layers.33.mlp.down_proj",
40
+ "model.layers.9.mlp.down_proj",
41
+ "model.layers.28.self_attn.v_proj",
42
+ "model.layers.4.mlp.gate_proj",
43
+ "model.layers.5.self_attn.q_proj",
44
+ "model.layers.16.self_attn.k_proj",
45
+ "model.layers.14.mlp.down_proj",
46
+ "model.layers.10.self_attn.v_proj",
47
+ "model.layers.11.self_attn.k_proj",
48
+ "model.layers.6.self_attn.k_proj",
49
+ "model.layers.6.mlp.up_proj",
50
+ "model.layers.3.self_attn.v_proj",
51
+ "model.layers.28.mlp.gate_proj",
52
+ "model.layers.11.self_attn.q_proj",
53
+ "model.layers.7.self_attn.o_proj",
54
+ "model.layers.24.self_attn.o_proj",
55
+ "model.layers.2.self_attn.k_proj",
56
+ "model.layers.18.self_attn.o_proj",
57
+ "model.layers.29.mlp.down_proj",
58
+ "model.layers.0.self_attn.k_proj",
59
+ "model.layers.20.self_attn.v_proj",
60
+ "model.layers.24.mlp.up_proj",
61
+ "model.layers.19.self_attn.o_proj",
62
+ "model.layers.14.mlp.gate_proj",
63
+ "model.layers.18.self_attn.k_proj",
64
+ "model.layers.16.mlp.gate_proj",
65
+ "model.layers.2.mlp.up_proj",
66
+ "model.layers.27.self_attn.q_proj",
67
+ "model.layers.34.mlp.up_proj",
68
+ "model.layers.22.mlp.down_proj",
69
+ "model.layers.0.self_attn.q_proj",
70
+ "model.layers.19.mlp.gate_proj",
71
+ "model.layers.30.self_attn.o_proj",
72
+ "model.layers.31.self_attn.v_proj",
73
+ "model.layers.6.self_attn.q_proj",
74
+ "model.layers.10.self_attn.k_proj",
75
+ "model.layers.20.mlp.down_proj",
76
+ "model.layers.5.self_attn.k_proj",
77
+ "model.layers.11.mlp.up_proj",
78
+ "model.layers.5.mlp.gate_proj",
79
+ "model.layers.7.self_attn.k_proj",
80
+ "model.layers.0.self_attn.v_proj",
81
+ "model.layers.15.self_attn.o_proj",
82
+ "model.layers.27.self_attn.o_proj",
83
+ "model.layers.1.mlp.down_proj",
84
+ "model.layers.25.self_attn.k_proj",
85
+ "model.layers.32.mlp.gate_proj",
86
+ "model.layers.35.self_attn.k_proj",
87
+ "model.layers.30.self_attn.q_proj",
88
+ "model.layers.33.mlp.gate_proj",
89
+ "model.layers.34.mlp.down_proj",
90
+ "model.layers.32.self_attn.o_proj",
91
+ "model.layers.34.self_attn.v_proj",
92
+ "model.layers.0.self_attn.o_proj",
93
+ "model.layers.23.mlp.up_proj",
94
+ "model.layers.32.mlp.down_proj",
95
+ "model.layers.21.self_attn.k_proj",
96
+ "model.layers.5.mlp.down_proj",
97
+ "model.layers.0.mlp.up_proj",
98
+ "model.layers.24.self_attn.q_proj",
99
+ "model.layers.4.self_attn.k_proj",
100
+ "model.layers.35.mlp.gate_proj",
101
+ "model.layers.3.mlp.down_proj",
102
+ "model.layers.13.mlp.down_proj",
103
+ "model.layers.1.self_attn.o_proj",
104
+ "model.layers.23.self_attn.o_proj",
105
+ "model.layers.1.self_attn.q_proj",
106
+ "model.layers.22.self_attn.q_proj",
107
+ "model.layers.25.self_attn.v_proj",
108
+ "model.layers.31.self_attn.q_proj",
109
+ "model.layers.13.self_attn.q_proj",
110
+ "model.layers.35.mlp.down_proj",
111
+ "model.layers.9.mlp.up_proj",
112
+ "model.layers.24.self_attn.v_proj",
113
+ "model.layers.7.self_attn.v_proj",
114
+ "model.layers.13.mlp.up_proj",
115
+ "model.layers.18.self_attn.q_proj",
116
+ "model.layers.23.self_attn.k_proj",
117
+ "model.layers.23.self_attn.q_proj",
118
+ "model.layers.30.mlp.up_proj",
119
+ "model.layers.17.self_attn.k_proj",
120
+ "model.layers.31.self_attn.k_proj",
121
+ "model.layers.25.mlp.down_proj",
122
+ "model.layers.3.self_attn.q_proj",
123
+ "model.layers.5.mlp.up_proj",
124
+ "model.layers.29.self_attn.v_proj",
125
+ "model.layers.11.mlp.gate_proj",
126
+ "model.layers.12.self_attn.o_proj",
127
+ "model.layers.32.self_attn.v_proj",
128
+ "model.layers.25.mlp.up_proj",
129
+ "model.layers.22.mlp.gate_proj",
130
+ "model.layers.9.self_attn.o_proj",
131
+ "model.layers.22.self_attn.o_proj",
132
+ "model.layers.9.mlp.gate_proj",
133
+ "model.layers.3.self_attn.o_proj",
134
+ "model.layers.17.self_attn.v_proj",
135
+ "model.layers.14.self_attn.o_proj",
136
+ "model.layers.34.self_attn.o_proj",
137
+ "model.layers.5.self_attn.v_proj",
138
+ "model.layers.15.mlp.up_proj",
139
+ "model.layers.2.self_attn.q_proj",
140
+ "model.layers.9.self_attn.q_proj",
141
+ "model.layers.16.self_attn.v_proj",
142
+ "model.layers.29.mlp.gate_proj",
143
+ "model.layers.35.self_attn.v_proj",
144
+ "model.layers.28.self_attn.q_proj",
145
+ "model.layers.3.mlp.up_proj",
146
+ "model.layers.18.self_attn.v_proj",
147
+ "model.layers.15.self_attn.v_proj",
148
+ "model.layers.10.self_attn.o_proj",
149
+ "model.layers.20.self_attn.o_proj",
150
+ "model.layers.26.mlp.down_proj",
151
+ "model.layers.7.mlp.down_proj",
152
+ "model.layers.31.mlp.down_proj",
153
+ "model.layers.7.self_attn.q_proj",
154
+ "model.layers.6.self_attn.o_proj",
155
+ "model.layers.24.mlp.gate_proj",
156
+ "model.layers.28.mlp.up_proj",
157
+ "model.layers.34.mlp.gate_proj",
158
+ "model.layers.17.self_attn.o_proj",
159
+ "model.layers.21.self_attn.v_proj",
160
+ "model.layers.22.self_attn.k_proj",
161
+ "model.layers.33.mlp.up_proj",
162
+ "model.layers.7.mlp.up_proj",
163
+ "model.layers.12.mlp.down_proj",
164
+ "model.layers.26.mlp.up_proj",
165
+ "model.layers.10.mlp.up_proj",
166
+ "model.layers.19.self_attn.q_proj",
167
+ "model.layers.17.self_attn.q_proj",
168
+ "model.layers.8.self_attn.q_proj",
169
+ "model.layers.21.mlp.down_proj",
170
+ "model.layers.25.mlp.gate_proj",
171
+ "model.layers.5.self_attn.o_proj",
172
+ "model.layers.29.self_attn.q_proj",
173
+ "model.layers.35.self_attn.o_proj",
174
+ "model.layers.19.self_attn.v_proj",
175
+ "model.layers.9.self_attn.k_proj",
176
+ "model.layers.0.mlp.gate_proj",
177
+ "model.layers.29.self_attn.k_proj",
178
+ "model.layers.4.mlp.up_proj",
179
+ "model.layers.31.mlp.up_proj",
180
+ "model.layers.10.self_attn.q_proj",
181
+ "model.layers.20.mlp.up_proj",
182
+ "model.layers.21.mlp.up_proj",
183
+ "model.layers.30.self_attn.k_proj",
184
+ "model.layers.16.mlp.up_proj",
185
+ "model.layers.11.mlp.down_proj",
186
+ "model.layers.2.self_attn.v_proj",
187
+ "model.layers.20.mlp.gate_proj",
188
+ "model.layers.8.self_attn.o_proj",
189
+ "model.layers.16.self_attn.o_proj",
190
+ "model.layers.25.self_attn.q_proj",
191
+ "model.layers.35.mlp.up_proj",
192
+ "model.layers.17.mlp.down_proj",
193
+ "model.layers.34.self_attn.k_proj",
194
+ "model.layers.30.mlp.down_proj",
195
+ "model.layers.8.mlp.up_proj",
196
+ "model.layers.13.self_attn.v_proj",
197
+ "model.layers.30.mlp.gate_proj",
198
+ "model.layers.14.mlp.up_proj",
199
+ "model.layers.27.mlp.up_proj",
200
+ "model.layers.35.self_attn.q_proj",
201
+ "model.layers.8.self_attn.v_proj",
202
+ "model.layers.12.mlp.up_proj",
203
+ "model.layers.18.mlp.down_proj",
204
+ "model.layers.26.self_attn.k_proj",
205
+ "model.layers.12.self_attn.v_proj",
206
+ "model.layers.13.self_attn.k_proj",
207
+ "model.layers.28.self_attn.o_proj",
208
+ "model.layers.0.mlp.down_proj",
209
+ "model.layers.31.mlp.gate_proj",
210
+ "model.layers.1.mlp.up_proj",
211
+ "model.layers.1.self_attn.v_proj",
212
+ "model.layers.19.self_attn.k_proj",
213
+ "model.layers.26.self_attn.o_proj",
214
+ "model.layers.33.self_attn.q_proj",
215
+ "model.layers.4.self_attn.o_proj",
216
+ "model.layers.14.self_attn.v_proj",
217
+ "model.layers.23.mlp.gate_proj",
218
+ "model.layers.6.mlp.gate_proj",
219
+ "model.layers.1.self_attn.k_proj",
220
+ "model.layers.13.mlp.gate_proj",
221
+ "model.layers.14.self_attn.k_proj",
222
+ "model.layers.3.mlp.gate_proj",
223
+ "model.layers.19.mlp.down_proj",
224
+ "model.layers.30.self_attn.v_proj",
225
+ "model.layers.27.mlp.down_proj",
226
+ "model.layers.32.self_attn.q_proj",
227
+ "model.layers.29.mlp.up_proj",
228
+ "model.layers.22.self_attn.v_proj",
229
+ "model.layers.23.mlp.down_proj",
230
+ "model.layers.17.mlp.gate_proj",
231
+ "model.layers.8.self_attn.k_proj",
232
+ "model.layers.12.self_attn.k_proj",
233
+ "model.layers.4.self_attn.v_proj",
234
+ "model.layers.18.mlp.up_proj",
235
+ "model.layers.10.mlp.gate_proj",
236
+ "model.layers.1.mlp.gate_proj",
237
+ "model.layers.14.self_attn.q_proj",
238
+ "model.layers.24.self_attn.k_proj",
239
+ "model.layers.7.mlp.gate_proj",
240
+ "model.layers.9.self_attn.v_proj",
241
+ "model.layers.26.self_attn.v_proj",
242
+ "model.layers.23.self_attn.v_proj",
243
+ "model.layers.15.mlp.gate_proj",
244
+ "model.layers.21.self_attn.o_proj",
245
+ "model.layers.8.mlp.down_proj",
246
+ "model.layers.20.self_attn.k_proj",
247
+ "model.layers.22.mlp.up_proj",
248
+ "model.layers.26.mlp.gate_proj",
249
+ "model.layers.15.self_attn.q_proj",
250
+ "model.layers.32.mlp.up_proj",
251
+ "model.layers.32.self_attn.k_proj",
252
+ "model.layers.10.mlp.down_proj",
253
+ "model.layers.24.mlp.down_proj",
254
+ "model.layers.27.mlp.gate_proj",
255
+ "model.layers.27.self_attn.v_proj",
256
+ "model.layers.12.mlp.gate_proj",
257
+ "model.layers.27.self_attn.k_proj",
258
+ "model.layers.19.mlp.up_proj",
259
+ "model.layers.20.self_attn.q_proj",
260
+ "model.layers.25.self_attn.o_proj",
261
+ "model.layers.16.mlp.down_proj",
262
+ "model.layers.6.mlp.down_proj",
263
+ "model.layers.31.self_attn.o_proj",
264
+ "model.layers.33.self_attn.v_proj",
265
+ "model.layers.33.self_attn.o_proj",
266
+ "model.layers.6.self_attn.v_proj",
267
+ "model.layers.26.self_attn.q_proj",
268
+ "model.layers.33.self_attn.k_proj",
269
+ "model.layers.28.mlp.down_proj",
270
+ "model.layers.2.self_attn.o_proj",
271
+ "model.layers.21.self_attn.q_proj",
272
+ "model.layers.11.self_attn.v_proj",
273
+ "model.layers.29.self_attn.o_proj",
274
+ "model.layers.16.self_attn.q_proj"
275
+ ],
276
+ "task_type": "CAUSAL_LM",
277
+ "use_dora": false,
278
+ "use_rslora": false
279
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cef54a2a0c8c0b947fc558f2573f77be82470f2bf6f5dedee8417fd1cae0a5c4
3
+ size 59933632
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 12845056,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "Qwen2_5_VLProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "longest_edge": 12845056,
26
+ "shortest_edge": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
3
+ size 11422063
tokenizer_config.json ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "max_length": null,
204
+ "model_max_length": 60000,
205
+ "pad_to_multiple_of": null,
206
+ "pad_token": "<|endoftext|>",
207
+ "pad_token_type_id": 0,
208
+ "padding_side": "right",
209
+ "processor_class": "Qwen2_5_VLProcessor",
210
+ "split_special_tokens": false,
211
+ "tokenizer_class": "Qwen2Tokenizer",
212
+ "unk_token": null
213
+ }
trainer_state.json ADDED
@@ -0,0 +1,3141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.9966329966329965,
5
+ "eval_steps": 500,
6
+ "global_step": 444,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.006734006734006734,
13
+ "grad_norm": 0.4674329161643982,
14
+ "learning_rate": 2.702702702702703e-07,
15
+ "loss": 0.8878,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.013468013468013467,
20
+ "grad_norm": 0.4288882613182068,
21
+ "learning_rate": 5.405405405405406e-07,
22
+ "loss": 0.9554,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.020202020202020204,
27
+ "grad_norm": 0.4333876669406891,
28
+ "learning_rate": 8.108108108108109e-07,
29
+ "loss": 0.9565,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.026936026936026935,
34
+ "grad_norm": 0.4596662223339081,
35
+ "learning_rate": 1.0810810810810812e-06,
36
+ "loss": 0.9475,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.03367003367003367,
41
+ "grad_norm": 0.476782888174057,
42
+ "learning_rate": 1.3513513513513515e-06,
43
+ "loss": 0.9307,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.04040404040404041,
48
+ "grad_norm": 0.4502452313899994,
49
+ "learning_rate": 1.6216216216216219e-06,
50
+ "loss": 0.9489,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.04713804713804714,
55
+ "grad_norm": 0.4531259536743164,
56
+ "learning_rate": 1.8918918918918922e-06,
57
+ "loss": 0.9744,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.05387205387205387,
62
+ "grad_norm": 0.45402348041534424,
63
+ "learning_rate": 2.1621621621621623e-06,
64
+ "loss": 0.9425,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.06060606060606061,
69
+ "grad_norm": 0.44291701912879944,
70
+ "learning_rate": 2.432432432432433e-06,
71
+ "loss": 0.9487,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.06734006734006734,
76
+ "grad_norm": 0.4839108884334564,
77
+ "learning_rate": 2.702702702702703e-06,
78
+ "loss": 0.9382,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.07407407407407407,
83
+ "grad_norm": 0.44631311297416687,
84
+ "learning_rate": 2.9729729729729736e-06,
85
+ "loss": 0.8985,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.08080808080808081,
90
+ "grad_norm": 0.4725789427757263,
91
+ "learning_rate": 3.2432432432432437e-06,
92
+ "loss": 0.9924,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.08754208754208755,
97
+ "grad_norm": 0.4641851782798767,
98
+ "learning_rate": 3.513513513513514e-06,
99
+ "loss": 0.9142,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.09427609427609428,
104
+ "grad_norm": 0.46973735094070435,
105
+ "learning_rate": 3.7837837837837844e-06,
106
+ "loss": 0.9383,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.10101010101010101,
111
+ "grad_norm": 0.4747369885444641,
112
+ "learning_rate": 4.0540540540540545e-06,
113
+ "loss": 0.9133,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.10774410774410774,
118
+ "grad_norm": 0.4584101140499115,
119
+ "learning_rate": 4.324324324324325e-06,
120
+ "loss": 0.927,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.11447811447811448,
125
+ "grad_norm": 0.4609006345272064,
126
+ "learning_rate": 4.594594594594596e-06,
127
+ "loss": 0.932,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.12121212121212122,
132
+ "grad_norm": 0.4389339089393616,
133
+ "learning_rate": 4.864864864864866e-06,
134
+ "loss": 0.9318,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.12794612794612795,
139
+ "grad_norm": 0.47249212861061096,
140
+ "learning_rate": 5.135135135135135e-06,
141
+ "loss": 0.9359,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.13468013468013468,
146
+ "grad_norm": 0.46650782227516174,
147
+ "learning_rate": 5.405405405405406e-06,
148
+ "loss": 0.9073,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.1414141414141414,
153
+ "grad_norm": 0.4591180980205536,
154
+ "learning_rate": 5.675675675675676e-06,
155
+ "loss": 0.9505,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.14814814814814814,
160
+ "grad_norm": 0.49153509736061096,
161
+ "learning_rate": 5.945945945945947e-06,
162
+ "loss": 0.9104,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.15488215488215487,
167
+ "grad_norm": 0.4966362416744232,
168
+ "learning_rate": 6.2162162162162164e-06,
169
+ "loss": 0.905,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.16161616161616163,
174
+ "grad_norm": 0.4932939112186432,
175
+ "learning_rate": 6.486486486486487e-06,
176
+ "loss": 0.9592,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.16835016835016836,
181
+ "grad_norm": 0.4675721824169159,
182
+ "learning_rate": 6.7567567567567575e-06,
183
+ "loss": 0.9215,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.1750841750841751,
188
+ "grad_norm": 0.47080472111701965,
189
+ "learning_rate": 7.027027027027028e-06,
190
+ "loss": 0.9972,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.18181818181818182,
195
+ "grad_norm": 0.4835442304611206,
196
+ "learning_rate": 7.297297297297298e-06,
197
+ "loss": 0.9141,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.18855218855218855,
202
+ "grad_norm": 0.47605717182159424,
203
+ "learning_rate": 7.567567567567569e-06,
204
+ "loss": 0.9398,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.19528619528619529,
209
+ "grad_norm": 0.4614209830760956,
210
+ "learning_rate": 7.837837837837838e-06,
211
+ "loss": 0.9129,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.20202020202020202,
216
+ "grad_norm": 0.4712672531604767,
217
+ "learning_rate": 8.108108108108109e-06,
218
+ "loss": 0.9007,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.20875420875420875,
223
+ "grad_norm": 0.4813186228275299,
224
+ "learning_rate": 8.378378378378378e-06,
225
+ "loss": 0.9331,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.21548821548821548,
230
+ "grad_norm": 0.466824471950531,
231
+ "learning_rate": 8.64864864864865e-06,
232
+ "loss": 0.9479,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.2222222222222222,
237
+ "grad_norm": 0.47713014483451843,
238
+ "learning_rate": 8.91891891891892e-06,
239
+ "loss": 0.9298,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.22895622895622897,
244
+ "grad_norm": 0.4705861210823059,
245
+ "learning_rate": 9.189189189189191e-06,
246
+ "loss": 0.9446,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.2356902356902357,
251
+ "grad_norm": 0.44828763604164124,
252
+ "learning_rate": 9.45945945945946e-06,
253
+ "loss": 0.9153,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.24242424242424243,
258
+ "grad_norm": 0.4529784321784973,
259
+ "learning_rate": 9.729729729729732e-06,
260
+ "loss": 0.8959,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.24915824915824916,
265
+ "grad_norm": 0.4544116258621216,
266
+ "learning_rate": 1e-05,
267
+ "loss": 0.9358,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.2558922558922559,
272
+ "grad_norm": 0.47299325466156006,
273
+ "learning_rate": 9.999950073815046e-06,
274
+ "loss": 0.913,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.26262626262626265,
279
+ "grad_norm": 0.46356692910194397,
280
+ "learning_rate": 9.999800296257234e-06,
281
+ "loss": 0.9063,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.26936026936026936,
286
+ "grad_norm": 0.4557459056377411,
287
+ "learning_rate": 9.99955067031769e-06,
288
+ "loss": 0.9597,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.2760942760942761,
293
+ "grad_norm": 0.4265868365764618,
294
+ "learning_rate": 9.999201200981566e-06,
295
+ "loss": 0.8871,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.2828282828282828,
300
+ "grad_norm": 0.4292503297328949,
301
+ "learning_rate": 9.998751895227927e-06,
302
+ "loss": 0.8867,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.2895622895622896,
307
+ "grad_norm": 0.3973385989665985,
308
+ "learning_rate": 9.998202762029626e-06,
309
+ "loss": 0.8663,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.2962962962962963,
314
+ "grad_norm": 0.4129696190357208,
315
+ "learning_rate": 9.997553812353106e-06,
316
+ "loss": 0.8981,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.30303030303030304,
321
+ "grad_norm": 0.4138651192188263,
322
+ "learning_rate": 9.996805059158208e-06,
323
+ "loss": 0.8688,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.30976430976430974,
328
+ "grad_norm": 0.4028445780277252,
329
+ "learning_rate": 9.995956517397884e-06,
330
+ "loss": 0.9049,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.3164983164983165,
335
+ "grad_norm": 0.3888985812664032,
336
+ "learning_rate": 9.995008204017914e-06,
337
+ "loss": 0.8332,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.32323232323232326,
342
+ "grad_norm": 0.36326923966407776,
343
+ "learning_rate": 9.99396013795657e-06,
344
+ "loss": 0.8285,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.32996632996632996,
349
+ "grad_norm": 0.343104749917984,
350
+ "learning_rate": 9.992812340144225e-06,
351
+ "loss": 0.8576,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.3367003367003367,
356
+ "grad_norm": 0.3436315059661865,
357
+ "learning_rate": 9.991564833502944e-06,
358
+ "loss": 0.8509,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.3434343434343434,
363
+ "grad_norm": 0.33012041449546814,
364
+ "learning_rate": 9.990217642946028e-06,
365
+ "loss": 0.8635,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.3501683501683502,
370
+ "grad_norm": 0.32571494579315186,
371
+ "learning_rate": 9.988770795377512e-06,
372
+ "loss": 0.8585,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.3569023569023569,
377
+ "grad_norm": 0.29031604528427124,
378
+ "learning_rate": 9.987224319691624e-06,
379
+ "loss": 0.8599,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.36363636363636365,
384
+ "grad_norm": 0.2973954975605011,
385
+ "learning_rate": 9.98557824677222e-06,
386
+ "loss": 0.8528,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.37037037037037035,
391
+ "grad_norm": 0.2861897945404053,
392
+ "learning_rate": 9.983832609492154e-06,
393
+ "loss": 0.8689,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.3771043771043771,
398
+ "grad_norm": 0.2961727976799011,
399
+ "learning_rate": 9.981987442712634e-06,
400
+ "loss": 0.837,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.3838383838383838,
405
+ "grad_norm": 0.28357475996017456,
406
+ "learning_rate": 9.98004278328251e-06,
407
+ "loss": 0.8244,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.39057239057239057,
412
+ "grad_norm": 0.2743470370769501,
413
+ "learning_rate": 9.977998670037554e-06,
414
+ "loss": 0.8737,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.39730639730639733,
419
+ "grad_norm": 0.2749946117401123,
420
+ "learning_rate": 9.97585514379968e-06,
421
+ "loss": 0.8848,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.40404040404040403,
426
+ "grad_norm": 0.2607375979423523,
427
+ "learning_rate": 9.973612247376118e-06,
428
+ "loss": 0.8432,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.4107744107744108,
433
+ "grad_norm": 0.25835004448890686,
434
+ "learning_rate": 9.971270025558576e-06,
435
+ "loss": 0.8362,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.4175084175084175,
440
+ "grad_norm": 0.24998688697814941,
441
+ "learning_rate": 9.968828525122331e-06,
442
+ "loss": 0.7833,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.42424242424242425,
447
+ "grad_norm": 0.25704672932624817,
448
+ "learning_rate": 9.966287794825305e-06,
449
+ "loss": 0.8186,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.43097643097643096,
454
+ "grad_norm": 0.2764415740966797,
455
+ "learning_rate": 9.963647885407088e-06,
456
+ "loss": 0.798,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.4377104377104377,
461
+ "grad_norm": 0.2261701226234436,
462
+ "learning_rate": 9.960908849587922e-06,
463
+ "loss": 0.7783,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.4444444444444444,
468
+ "grad_norm": 0.26680904626846313,
469
+ "learning_rate": 9.958070742067649e-06,
470
+ "loss": 0.836,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.4511784511784512,
475
+ "grad_norm": 0.23155707120895386,
476
+ "learning_rate": 9.955133619524623e-06,
477
+ "loss": 0.7938,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.45791245791245794,
482
+ "grad_norm": 0.2517130374908447,
483
+ "learning_rate": 9.952097540614571e-06,
484
+ "loss": 0.8131,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.46464646464646464,
489
+ "grad_norm": 0.2457548826932907,
490
+ "learning_rate": 9.948962565969431e-06,
491
+ "loss": 0.8164,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.4713804713804714,
496
+ "grad_norm": 0.22898763418197632,
497
+ "learning_rate": 9.945728758196129e-06,
498
+ "loss": 0.7757,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.4781144781144781,
503
+ "grad_norm": 0.2146165817975998,
504
+ "learning_rate": 9.942396181875342e-06,
505
+ "loss": 0.8254,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.48484848484848486,
510
+ "grad_norm": 0.232045978307724,
511
+ "learning_rate": 9.938964903560198e-06,
512
+ "loss": 0.8173,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.49158249158249157,
517
+ "grad_norm": 0.22347578406333923,
518
+ "learning_rate": 9.935434991774951e-06,
519
+ "loss": 0.8228,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.4983164983164983,
524
+ "grad_norm": 0.22920922935009003,
525
+ "learning_rate": 9.931806517013612e-06,
526
+ "loss": 0.8275,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.5050505050505051,
531
+ "grad_norm": 0.24698615074157715,
532
+ "learning_rate": 9.928079551738542e-06,
533
+ "loss": 0.8209,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.5117845117845118,
538
+ "grad_norm": 0.23692172765731812,
539
+ "learning_rate": 9.924254170379007e-06,
540
+ "loss": 0.8215,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.5185185185185185,
545
+ "grad_norm": 0.24865996837615967,
546
+ "learning_rate": 9.92033044932968e-06,
547
+ "loss": 0.7984,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.5252525252525253,
552
+ "grad_norm": 0.23505768179893494,
553
+ "learning_rate": 9.916308466949134e-06,
554
+ "loss": 0.8014,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.531986531986532,
559
+ "grad_norm": 0.2524789869785309,
560
+ "learning_rate": 9.912188303558263e-06,
561
+ "loss": 0.8097,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.5387205387205387,
566
+ "grad_norm": 0.25673165917396545,
567
+ "learning_rate": 9.907970041438683e-06,
568
+ "loss": 0.8022,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.5454545454545454,
573
+ "grad_norm": 0.2574709355831146,
574
+ "learning_rate": 9.903653764831088e-06,
575
+ "loss": 0.7995,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.5521885521885522,
580
+ "grad_norm": 0.2411055862903595,
581
+ "learning_rate": 9.899239559933566e-06,
582
+ "loss": 0.7819,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.5589225589225589,
587
+ "grad_norm": 0.24539045989513397,
588
+ "learning_rate": 9.894727514899883e-06,
589
+ "loss": 0.7956,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.5656565656565656,
594
+ "grad_norm": 0.23138682544231415,
595
+ "learning_rate": 9.890117719837716e-06,
596
+ "loss": 0.7713,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.5723905723905723,
601
+ "grad_norm": 0.21052764356136322,
602
+ "learning_rate": 9.885410266806858e-06,
603
+ "loss": 0.8155,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.5791245791245792,
608
+ "grad_norm": 0.2486884891986847,
609
+ "learning_rate": 9.880605249817377e-06,
610
+ "loss": 0.8076,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.5858585858585859,
615
+ "grad_norm": 0.2390533983707428,
616
+ "learning_rate": 9.875702764827739e-06,
617
+ "loss": 0.7993,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.5925925925925926,
622
+ "grad_norm": 0.2276839017868042,
623
+ "learning_rate": 9.870702909742893e-06,
624
+ "loss": 0.776,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.5993265993265994,
629
+ "grad_norm": 0.25543203949928284,
630
+ "learning_rate": 9.865605784412316e-06,
631
+ "loss": 0.7935,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.6060606060606061,
636
+ "grad_norm": 0.23849958181381226,
637
+ "learning_rate": 9.860411490628017e-06,
638
+ "loss": 0.8,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.6127946127946128,
643
+ "grad_norm": 0.22977019846439362,
644
+ "learning_rate": 9.855120132122503e-06,
645
+ "loss": 0.7497,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.6195286195286195,
650
+ "grad_norm": 0.21937815845012665,
651
+ "learning_rate": 9.849731814566713e-06,
652
+ "loss": 0.7862,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.6262626262626263,
657
+ "grad_norm": 0.23629795014858246,
658
+ "learning_rate": 9.844246645567903e-06,
659
+ "loss": 0.7901,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.632996632996633,
664
+ "grad_norm": 0.22892089188098907,
665
+ "learning_rate": 9.838664734667496e-06,
666
+ "loss": 0.7674,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.6397306397306397,
671
+ "grad_norm": 0.21019472181797028,
672
+ "learning_rate": 9.832986193338898e-06,
673
+ "loss": 0.779,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.6464646464646465,
678
+ "grad_norm": 0.2447926104068756,
679
+ "learning_rate": 9.827211134985273e-06,
680
+ "loss": 0.7801,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.6531986531986532,
685
+ "grad_norm": 0.23594583570957184,
686
+ "learning_rate": 9.821339674937274e-06,
687
+ "loss": 0.8055,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.6599326599326599,
692
+ "grad_norm": 0.22600403428077698,
693
+ "learning_rate": 9.815371930450737e-06,
694
+ "loss": 0.8169,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.6666666666666666,
699
+ "grad_norm": 0.24343664944171906,
700
+ "learning_rate": 9.809308020704353e-06,
701
+ "loss": 0.7987,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.6734006734006734,
706
+ "grad_norm": 0.22726725041866302,
707
+ "learning_rate": 9.80314806679727e-06,
708
+ "loss": 0.7347,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.6801346801346801,
713
+ "grad_norm": 0.22291769087314606,
714
+ "learning_rate": 9.79689219174669e-06,
715
+ "loss": 0.7644,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.6868686868686869,
720
+ "grad_norm": 0.24143223464488983,
721
+ "learning_rate": 9.790540520485402e-06,
722
+ "loss": 0.7759,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.6936026936026936,
727
+ "grad_norm": 0.2362246811389923,
728
+ "learning_rate": 9.78409317985929e-06,
729
+ "loss": 0.8292,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.7003367003367004,
734
+ "grad_norm": 0.2230088859796524,
735
+ "learning_rate": 9.777550298624805e-06,
736
+ "loss": 0.7516,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.7070707070707071,
741
+ "grad_norm": 0.22827690839767456,
742
+ "learning_rate": 9.770912007446385e-06,
743
+ "loss": 0.7386,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.7138047138047138,
748
+ "grad_norm": 0.2498016208410263,
749
+ "learning_rate": 9.76417843889385e-06,
750
+ "loss": 0.7624,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.7205387205387206,
755
+ "grad_norm": 0.21709798276424408,
756
+ "learning_rate": 9.757349727439759e-06,
757
+ "loss": 0.764,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.7272727272727273,
762
+ "grad_norm": 0.21755844354629517,
763
+ "learning_rate": 9.750426009456713e-06,
764
+ "loss": 0.7877,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.734006734006734,
769
+ "grad_norm": 0.227566659450531,
770
+ "learning_rate": 9.743407423214643e-06,
771
+ "loss": 0.7611,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.7407407407407407,
776
+ "grad_norm": 0.2640649676322937,
777
+ "learning_rate": 9.736294108878044e-06,
778
+ "loss": 0.7729,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.7474747474747475,
783
+ "grad_norm": 0.2128470242023468,
784
+ "learning_rate": 9.729086208503174e-06,
785
+ "loss": 0.7576,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.7542087542087542,
790
+ "grad_norm": 0.22666677832603455,
791
+ "learning_rate": 9.72178386603522e-06,
792
+ "loss": 0.7779,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.7609427609427609,
797
+ "grad_norm": 0.21836517751216888,
798
+ "learning_rate": 9.714387227305422e-06,
799
+ "loss": 0.7299,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.7676767676767676,
804
+ "grad_norm": 0.2525302469730377,
805
+ "learning_rate": 9.70689644002816e-06,
806
+ "loss": 0.7633,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.7744107744107744,
811
+ "grad_norm": 0.24227039515972137,
812
+ "learning_rate": 9.69931165379801e-06,
813
+ "loss": 0.785,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.7811447811447811,
818
+ "grad_norm": 0.22788166999816895,
819
+ "learning_rate": 9.691633020086745e-06,
820
+ "loss": 0.7537,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.7878787878787878,
825
+ "grad_norm": 0.24258917570114136,
826
+ "learning_rate": 9.683860692240322e-06,
827
+ "loss": 0.7695,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.7946127946127947,
832
+ "grad_norm": 0.23187682032585144,
833
+ "learning_rate": 9.67599482547581e-06,
834
+ "loss": 0.7411,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.8013468013468014,
839
+ "grad_norm": 0.23363040387630463,
840
+ "learning_rate": 9.668035576878296e-06,
841
+ "loss": 0.749,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.8080808080808081,
846
+ "grad_norm": 0.2519008219242096,
847
+ "learning_rate": 9.65998310539775e-06,
848
+ "loss": 0.7784,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.8148148148148148,
853
+ "grad_norm": 0.22125515341758728,
854
+ "learning_rate": 9.651837571845842e-06,
855
+ "loss": 0.7455,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.8215488215488216,
860
+ "grad_norm": 0.25824788212776184,
861
+ "learning_rate": 9.643599138892737e-06,
862
+ "loss": 0.7614,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.8282828282828283,
867
+ "grad_norm": 0.23877231776714325,
868
+ "learning_rate": 9.635267971063848e-06,
869
+ "loss": 0.765,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.835016835016835,
874
+ "grad_norm": 0.2506805956363678,
875
+ "learning_rate": 9.626844234736546e-06,
876
+ "loss": 0.7746,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.8417508417508418,
881
+ "grad_norm": 0.2351042479276657,
882
+ "learning_rate": 9.618328098136838e-06,
883
+ "loss": 0.7471,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.8484848484848485,
888
+ "grad_norm": 0.25443699955940247,
889
+ "learning_rate": 9.609719731336005e-06,
890
+ "loss": 0.77,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.8552188552188552,
895
+ "grad_norm": 0.23053216934204102,
896
+ "learning_rate": 9.601019306247214e-06,
897
+ "loss": 0.7415,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.8619528619528619,
902
+ "grad_norm": 0.24876555800437927,
903
+ "learning_rate": 9.59222699662208e-06,
904
+ "loss": 0.7723,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.8686868686868687,
909
+ "grad_norm": 0.230879545211792,
910
+ "learning_rate": 9.58334297804719e-06,
911
+ "loss": 0.773,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.8754208754208754,
916
+ "grad_norm": 0.267036110162735,
917
+ "learning_rate": 9.574367427940609e-06,
918
+ "loss": 0.7782,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.8821548821548821,
923
+ "grad_norm": 0.2757895588874817,
924
+ "learning_rate": 9.565300525548327e-06,
925
+ "loss": 0.7624,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.8888888888888888,
930
+ "grad_norm": 0.2372322976589203,
931
+ "learning_rate": 9.55614245194068e-06,
932
+ "loss": 0.7282,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.8956228956228957,
937
+ "grad_norm": 0.23569901287555695,
938
+ "learning_rate": 9.546893390008737e-06,
939
+ "loss": 0.75,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.9023569023569024,
944
+ "grad_norm": 0.24758505821228027,
945
+ "learning_rate": 9.537553524460656e-06,
946
+ "loss": 0.7947,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.9090909090909091,
951
+ "grad_norm": 0.23305581510066986,
952
+ "learning_rate": 9.528123041817972e-06,
953
+ "loss": 0.7617,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.9158249158249159,
958
+ "grad_norm": 0.23048968613147736,
959
+ "learning_rate": 9.518602130411894e-06,
960
+ "loss": 0.7707,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.9225589225589226,
965
+ "grad_norm": 0.2431011199951172,
966
+ "learning_rate": 9.508990980379537e-06,
967
+ "loss": 0.742,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.9292929292929293,
972
+ "grad_norm": 0.23194094002246857,
973
+ "learning_rate": 9.499289783660126e-06,
974
+ "loss": 0.7617,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.936026936026936,
979
+ "grad_norm": 0.24811971187591553,
980
+ "learning_rate": 9.489498733991151e-06,
981
+ "loss": 0.7579,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.9427609427609428,
986
+ "grad_norm": 0.24215534329414368,
987
+ "learning_rate": 9.47961802690452e-06,
988
+ "loss": 0.7752,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.9494949494949495,
993
+ "grad_norm": 0.22330717742443085,
994
+ "learning_rate": 9.469647859722634e-06,
995
+ "loss": 0.738,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.9562289562289562,
1000
+ "grad_norm": 0.23054972290992737,
1001
+ "learning_rate": 9.459588431554458e-06,
1002
+ "loss": 0.7754,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.9629629629629629,
1007
+ "grad_norm": 0.2682708203792572,
1008
+ "learning_rate": 9.449439943291541e-06,
1009
+ "loss": 0.6985,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.9696969696969697,
1014
+ "grad_norm": 0.23973660171031952,
1015
+ "learning_rate": 9.439202597604004e-06,
1016
+ "loss": 0.7323,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.9764309764309764,
1021
+ "grad_norm": 0.23046766221523285,
1022
+ "learning_rate": 9.42887659893649e-06,
1023
+ "loss": 0.7203,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.9831649831649831,
1028
+ "grad_norm": 0.24555841088294983,
1029
+ "learning_rate": 9.41846215350409e-06,
1030
+ "loss": 0.7499,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.98989898989899,
1035
+ "grad_norm": 0.25212836265563965,
1036
+ "learning_rate": 9.407959469288215e-06,
1037
+ "loss": 0.745,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.9966329966329966,
1042
+ "grad_norm": 0.23800650238990784,
1043
+ "learning_rate": 9.397368756032445e-06,
1044
+ "loss": 0.7439,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 1.0067340067340067,
1049
+ "grad_norm": 0.28960976004600525,
1050
+ "learning_rate": 9.386690225238346e-06,
1051
+ "loss": 0.9352,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 1.0134680134680134,
1056
+ "grad_norm": 0.23404806852340698,
1057
+ "learning_rate": 9.375924090161238e-06,
1058
+ "loss": 0.7395,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 1.02020202020202,
1063
+ "grad_norm": 0.2719663381576538,
1064
+ "learning_rate": 9.365070565805941e-06,
1065
+ "loss": 0.7852,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 1.026936026936027,
1070
+ "grad_norm": 0.2808714807033539,
1071
+ "learning_rate": 9.354129868922483e-06,
1072
+ "loss": 0.7412,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 1.0336700336700337,
1077
+ "grad_norm": 0.23448531329631805,
1078
+ "learning_rate": 9.343102218001763e-06,
1079
+ "loss": 0.7073,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 1.0404040404040404,
1084
+ "grad_norm": 0.24488256871700287,
1085
+ "learning_rate": 9.331987833271199e-06,
1086
+ "loss": 0.7665,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 1.0471380471380471,
1091
+ "grad_norm": 0.27663859724998474,
1092
+ "learning_rate": 9.32078693669032e-06,
1093
+ "loss": 0.7074,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 1.0538720538720538,
1098
+ "grad_norm": 0.25091904401779175,
1099
+ "learning_rate": 9.309499751946345e-06,
1100
+ "loss": 0.7394,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 1.0606060606060606,
1105
+ "grad_norm": 0.25539129972457886,
1106
+ "learning_rate": 9.298126504449697e-06,
1107
+ "loss": 0.7411,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 1.0673400673400673,
1112
+ "grad_norm": 0.24508924782276154,
1113
+ "learning_rate": 9.286667421329523e-06,
1114
+ "loss": 0.7413,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 1.074074074074074,
1119
+ "grad_norm": 0.2480177879333496,
1120
+ "learning_rate": 9.275122731429142e-06,
1121
+ "loss": 0.773,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 1.0808080808080809,
1126
+ "grad_norm": 0.23678265511989594,
1127
+ "learning_rate": 9.263492665301486e-06,
1128
+ "loss": 0.7516,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 1.0875420875420876,
1133
+ "grad_norm": 0.24282552301883698,
1134
+ "learning_rate": 9.251777455204485e-06,
1135
+ "loss": 0.7634,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 1.0942760942760943,
1140
+ "grad_norm": 0.2432844042778015,
1141
+ "learning_rate": 9.239977335096439e-06,
1142
+ "loss": 0.7366,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 1.101010101010101,
1147
+ "grad_norm": 0.30914798378944397,
1148
+ "learning_rate": 9.228092540631342e-06,
1149
+ "loss": 0.7038,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 1.1077441077441077,
1154
+ "grad_norm": 0.24757800996303558,
1155
+ "learning_rate": 9.216123309154169e-06,
1156
+ "loss": 0.7019,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 1.1144781144781144,
1161
+ "grad_norm": 0.25173789262771606,
1162
+ "learning_rate": 9.204069879696144e-06,
1163
+ "loss": 0.7032,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 1.121212121212121,
1168
+ "grad_norm": 0.25156348943710327,
1169
+ "learning_rate": 9.191932492969972e-06,
1170
+ "loss": 0.7092,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 1.127946127946128,
1175
+ "grad_norm": 0.23508214950561523,
1176
+ "learning_rate": 9.179711391365015e-06,
1177
+ "loss": 0.6959,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 1.1346801346801347,
1182
+ "grad_norm": 0.24067312479019165,
1183
+ "learning_rate": 9.167406818942468e-06,
1184
+ "loss": 0.6855,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 1.1414141414141414,
1189
+ "grad_norm": 0.24786119163036346,
1190
+ "learning_rate": 9.155019021430469e-06,
1191
+ "loss": 0.7041,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 1.1481481481481481,
1196
+ "grad_norm": 0.24527166783809662,
1197
+ "learning_rate": 9.142548246219212e-06,
1198
+ "loss": 0.7275,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 1.1548821548821548,
1203
+ "grad_norm": 0.25038015842437744,
1204
+ "learning_rate": 9.129994742355985e-06,
1205
+ "loss": 0.7218,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 1.1616161616161615,
1210
+ "grad_norm": 0.2645305395126343,
1211
+ "learning_rate": 9.117358760540211e-06,
1212
+ "loss": 0.7219,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 1.1683501683501682,
1217
+ "grad_norm": 0.2419489324092865,
1218
+ "learning_rate": 9.104640553118436e-06,
1219
+ "loss": 0.7023,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 1.1750841750841752,
1224
+ "grad_norm": 0.2727682888507843,
1225
+ "learning_rate": 9.09184037407929e-06,
1226
+ "loss": 0.7432,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 1.1818181818181819,
1231
+ "grad_norm": 0.23827053606510162,
1232
+ "learning_rate": 9.078958479048419e-06,
1233
+ "loss": 0.7002,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 1.1885521885521886,
1238
+ "grad_norm": 0.2524107098579407,
1239
+ "learning_rate": 9.065995125283367e-06,
1240
+ "loss": 0.7059,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 1.1952861952861953,
1245
+ "grad_norm": 0.2655806243419647,
1246
+ "learning_rate": 9.052950571668458e-06,
1247
+ "loss": 0.7418,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 1.202020202020202,
1252
+ "grad_norm": 0.249600350856781,
1253
+ "learning_rate": 9.039825078709606e-06,
1254
+ "loss": 0.7192,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 1.2087542087542087,
1259
+ "grad_norm": 0.23730139434337616,
1260
+ "learning_rate": 9.026618908529132e-06,
1261
+ "loss": 0.6776,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 1.2154882154882154,
1266
+ "grad_norm": 0.24353739619255066,
1267
+ "learning_rate": 9.013332324860508e-06,
1268
+ "loss": 0.7146,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 1.2222222222222223,
1273
+ "grad_norm": 0.26473721861839294,
1274
+ "learning_rate": 8.999965593043113e-06,
1275
+ "loss": 0.7188,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 1.228956228956229,
1280
+ "grad_norm": 0.27650538086891174,
1281
+ "learning_rate": 8.986518980016914e-06,
1282
+ "loss": 0.699,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 1.2356902356902357,
1287
+ "grad_norm": 0.2610260248184204,
1288
+ "learning_rate": 8.972992754317144e-06,
1289
+ "loss": 0.7126,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 1.2424242424242424,
1294
+ "grad_norm": 0.2537449896335602,
1295
+ "learning_rate": 8.95938718606895e-06,
1296
+ "loss": 0.7251,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 1.2491582491582491,
1301
+ "grad_norm": 0.25600242614746094,
1302
+ "learning_rate": 8.94570254698197e-06,
1303
+ "loss": 0.71,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 1.2558922558922558,
1308
+ "grad_norm": 0.28031960129737854,
1309
+ "learning_rate": 8.931939110344935e-06,
1310
+ "loss": 0.7254,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 1.2626262626262625,
1315
+ "grad_norm": 0.2574886679649353,
1316
+ "learning_rate": 8.9180971510202e-06,
1317
+ "loss": 0.7297,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 1.2693602693602695,
1322
+ "grad_norm": 0.25932928919792175,
1323
+ "learning_rate": 8.904176945438255e-06,
1324
+ "loss": 0.7118,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 1.2760942760942762,
1329
+ "grad_norm": 0.2755904197692871,
1330
+ "learning_rate": 8.890178771592198e-06,
1331
+ "loss": 0.7173,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 1.2828282828282829,
1336
+ "grad_norm": 0.26966917514801025,
1337
+ "learning_rate": 8.8761029090322e-06,
1338
+ "loss": 0.725,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 1.2895622895622896,
1343
+ "grad_norm": 0.27923187613487244,
1344
+ "learning_rate": 8.861949638859908e-06,
1345
+ "loss": 0.7216,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 1.2962962962962963,
1350
+ "grad_norm": 0.2591821551322937,
1351
+ "learning_rate": 8.847719243722835e-06,
1352
+ "loss": 0.7067,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 1.303030303030303,
1357
+ "grad_norm": 0.284316748380661,
1358
+ "learning_rate": 8.833412007808714e-06,
1359
+ "loss": 0.7303,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 1.3097643097643097,
1364
+ "grad_norm": 0.25714966654777527,
1365
+ "learning_rate": 8.819028216839831e-06,
1366
+ "loss": 0.7035,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 1.3164983164983166,
1371
+ "grad_norm": 0.2684500813484192,
1372
+ "learning_rate": 8.804568158067308e-06,
1373
+ "loss": 0.7089,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 1.3232323232323233,
1378
+ "grad_norm": 0.25351622700691223,
1379
+ "learning_rate": 8.790032120265373e-06,
1380
+ "loss": 0.7044,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 1.32996632996633,
1385
+ "grad_norm": 0.25690147280693054,
1386
+ "learning_rate": 8.775420393725592e-06,
1387
+ "loss": 0.7208,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 1.3367003367003367,
1392
+ "grad_norm": 0.2771032154560089,
1393
+ "learning_rate": 8.760733270251065e-06,
1394
+ "loss": 0.716,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 1.3434343434343434,
1399
+ "grad_norm": 0.2745297849178314,
1400
+ "learning_rate": 8.745971043150614e-06,
1401
+ "loss": 0.7165,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 1.3501683501683501,
1406
+ "grad_norm": 0.275926411151886,
1407
+ "learning_rate": 8.73113400723291e-06,
1408
+ "loss": 0.7015,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 1.3569023569023568,
1413
+ "grad_norm": 0.2907668650150299,
1414
+ "learning_rate": 8.716222458800591e-06,
1415
+ "loss": 0.738,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 1.3636363636363638,
1420
+ "grad_norm": 0.2874827980995178,
1421
+ "learning_rate": 8.70123669564435e-06,
1422
+ "loss": 0.6867,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 1.3703703703703702,
1427
+ "grad_norm": 0.27132922410964966,
1428
+ "learning_rate": 8.686177017036979e-06,
1429
+ "loss": 0.7107,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 1.3771043771043772,
1434
+ "grad_norm": 0.30173900723457336,
1435
+ "learning_rate": 8.671043723727396e-06,
1436
+ "loss": 0.6803,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 1.3838383838383839,
1441
+ "grad_norm": 0.29518023133277893,
1442
+ "learning_rate": 8.655837117934642e-06,
1443
+ "loss": 0.7151,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 1.3905723905723906,
1448
+ "grad_norm": 0.2551437318325043,
1449
+ "learning_rate": 8.640557503341843e-06,
1450
+ "loss": 0.6806,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 1.3973063973063973,
1455
+ "grad_norm": 0.261708527803421,
1456
+ "learning_rate": 8.625205185090147e-06,
1457
+ "loss": 0.7056,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 1.404040404040404,
1462
+ "grad_norm": 0.2630426287651062,
1463
+ "learning_rate": 8.609780469772623e-06,
1464
+ "loss": 0.6659,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 1.410774410774411,
1469
+ "grad_norm": 0.3132041394710541,
1470
+ "learning_rate": 8.594283665428147e-06,
1471
+ "loss": 0.7101,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 1.4175084175084174,
1476
+ "grad_norm": 0.26227623224258423,
1477
+ "learning_rate": 8.57871508153525e-06,
1478
+ "loss": 0.7279,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 1.4242424242424243,
1483
+ "grad_norm": 0.3779846131801605,
1484
+ "learning_rate": 8.563075029005924e-06,
1485
+ "loss": 0.7379,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 1.430976430976431,
1490
+ "grad_norm": 0.2800910472869873,
1491
+ "learning_rate": 8.547363820179442e-06,
1492
+ "loss": 0.7168,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 1.4377104377104377,
1497
+ "grad_norm": 0.2794981002807617,
1498
+ "learning_rate": 8.531581768816085e-06,
1499
+ "loss": 0.6948,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 1.4444444444444444,
1504
+ "grad_norm": 0.3207724392414093,
1505
+ "learning_rate": 8.515729190090895e-06,
1506
+ "loss": 0.7106,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 1.4511784511784511,
1511
+ "grad_norm": 0.27082759141921997,
1512
+ "learning_rate": 8.499806400587391e-06,
1513
+ "loss": 0.7566,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 1.457912457912458,
1518
+ "grad_norm": 0.30250316858291626,
1519
+ "learning_rate": 8.483813718291223e-06,
1520
+ "loss": 0.679,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 1.4646464646464645,
1525
+ "grad_norm": 0.28343290090560913,
1526
+ "learning_rate": 8.467751462583837e-06,
1527
+ "loss": 0.726,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 1.4713804713804715,
1532
+ "grad_norm": 0.2696777582168579,
1533
+ "learning_rate": 8.451619954236093e-06,
1534
+ "loss": 0.7017,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 1.4781144781144782,
1539
+ "grad_norm": 0.2962685823440552,
1540
+ "learning_rate": 8.435419515401856e-06,
1541
+ "loss": 0.7455,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 1.4848484848484849,
1546
+ "grad_norm": 0.28010743856430054,
1547
+ "learning_rate": 8.419150469611572e-06,
1548
+ "loss": 0.6767,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 1.4915824915824916,
1553
+ "grad_norm": 0.2887760102748871,
1554
+ "learning_rate": 8.402813141765796e-06,
1555
+ "loss": 0.6452,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 1.4983164983164983,
1560
+ "grad_norm": 0.276254802942276,
1561
+ "learning_rate": 8.386407858128707e-06,
1562
+ "loss": 0.6759,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 1.5050505050505052,
1567
+ "grad_norm": 0.27473849058151245,
1568
+ "learning_rate": 8.369934946321594e-06,
1569
+ "loss": 0.7207,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 1.5117845117845117,
1574
+ "grad_norm": 0.26720133423805237,
1575
+ "learning_rate": 8.353394735316317e-06,
1576
+ "loss": 0.6672,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 1.5185185185185186,
1581
+ "grad_norm": 0.2742222547531128,
1582
+ "learning_rate": 8.336787555428728e-06,
1583
+ "loss": 0.7073,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 1.5252525252525253,
1588
+ "grad_norm": 0.27671125531196594,
1589
+ "learning_rate": 8.320113738312081e-06,
1590
+ "loss": 0.7018,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 1.531986531986532,
1595
+ "grad_norm": 0.266973614692688,
1596
+ "learning_rate": 8.303373616950408e-06,
1597
+ "loss": 0.6699,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 1.5387205387205387,
1602
+ "grad_norm": 0.26349687576293945,
1603
+ "learning_rate": 8.286567525651865e-06,
1604
+ "loss": 0.7135,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 1.5454545454545454,
1609
+ "grad_norm": 0.30225032567977905,
1610
+ "learning_rate": 8.269695800042061e-06,
1611
+ "loss": 0.7318,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 1.5521885521885523,
1616
+ "grad_norm": 0.28462594747543335,
1617
+ "learning_rate": 8.252758777057355e-06,
1618
+ "loss": 0.6692,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 1.5589225589225588,
1623
+ "grad_norm": 0.3298182189464569,
1624
+ "learning_rate": 8.235756794938123e-06,
1625
+ "loss": 0.7219,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 1.5656565656565657,
1630
+ "grad_norm": 0.26634180545806885,
1631
+ "learning_rate": 8.218690193222007e-06,
1632
+ "loss": 0.6879,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 1.5723905723905722,
1637
+ "grad_norm": 0.2943713366985321,
1638
+ "learning_rate": 8.201559312737131e-06,
1639
+ "loss": 0.6677,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 1.5791245791245792,
1644
+ "grad_norm": 0.2855622470378876,
1645
+ "learning_rate": 8.1843644955953e-06,
1646
+ "loss": 0.6951,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 1.5858585858585859,
1651
+ "grad_norm": 0.2742707133293152,
1652
+ "learning_rate": 8.167106085185161e-06,
1653
+ "loss": 0.6899,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 1.5925925925925926,
1658
+ "grad_norm": 0.2689763307571411,
1659
+ "learning_rate": 8.149784426165351e-06,
1660
+ "loss": 0.6886,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 1.5993265993265995,
1665
+ "grad_norm": 0.3123777210712433,
1666
+ "learning_rate": 8.13239986445761e-06,
1667
+ "loss": 0.7141,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 1.606060606060606,
1672
+ "grad_norm": 0.284868448972702,
1673
+ "learning_rate": 8.114952747239876e-06,
1674
+ "loss": 0.6793,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 1.612794612794613,
1679
+ "grad_norm": 0.28802135586738586,
1680
+ "learning_rate": 8.09744342293935e-06,
1681
+ "loss": 0.6831,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 1.6195286195286194,
1686
+ "grad_norm": 0.2741600573062897,
1687
+ "learning_rate": 8.079872241225534e-06,
1688
+ "loss": 0.6887,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 1.6262626262626263,
1693
+ "grad_norm": 0.3155152499675751,
1694
+ "learning_rate": 8.06223955300326e-06,
1695
+ "loss": 0.7127,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 1.632996632996633,
1700
+ "grad_norm": 0.29525065422058105,
1701
+ "learning_rate": 8.044545710405666e-06,
1702
+ "loss": 0.7051,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 1.6397306397306397,
1707
+ "grad_norm": 0.3008731007575989,
1708
+ "learning_rate": 8.026791066787177e-06,
1709
+ "loss": 0.7012,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 1.6464646464646466,
1714
+ "grad_norm": 0.3014560639858246,
1715
+ "learning_rate": 8.00897597671644e-06,
1716
+ "loss": 0.6887,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 1.6531986531986531,
1721
+ "grad_norm": 0.28930526971817017,
1722
+ "learning_rate": 7.991100795969248e-06,
1723
+ "loss": 0.7171,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 1.65993265993266,
1728
+ "grad_norm": 0.3083915114402771,
1729
+ "learning_rate": 7.973165881521435e-06,
1730
+ "loss": 0.7202,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 1.6666666666666665,
1735
+ "grad_norm": 0.3567061126232147,
1736
+ "learning_rate": 7.955171591541739e-06,
1737
+ "loss": 0.7043,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 1.6734006734006734,
1742
+ "grad_norm": 0.33908185362815857,
1743
+ "learning_rate": 7.937118285384666e-06,
1744
+ "loss": 0.6687,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 1.6801346801346801,
1749
+ "grad_norm": 0.28633400797843933,
1750
+ "learning_rate": 7.91900632358329e-06,
1751
+ "loss": 0.7112,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 1.6868686868686869,
1756
+ "grad_norm": 0.3234066069126129,
1757
+ "learning_rate": 7.90083606784208e-06,
1758
+ "loss": 0.7095,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 1.6936026936026936,
1763
+ "grad_norm": 0.2888222932815552,
1764
+ "learning_rate": 7.882607881029652e-06,
1765
+ "loss": 0.7193,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 1.7003367003367003,
1770
+ "grad_norm": 0.29027071595191956,
1771
+ "learning_rate": 7.864322127171535e-06,
1772
+ "loss": 0.7157,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 1.7070707070707072,
1777
+ "grad_norm": 0.29393255710601807,
1778
+ "learning_rate": 7.8459791714429e-06,
1779
+ "loss": 0.7104,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 1.7138047138047137,
1784
+ "grad_norm": 0.3067580759525299,
1785
+ "learning_rate": 7.827579380161272e-06,
1786
+ "loss": 0.6964,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 1.7205387205387206,
1791
+ "grad_norm": 0.2851170003414154,
1792
+ "learning_rate": 7.809123120779201e-06,
1793
+ "loss": 0.6804,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 1.7272727272727273,
1798
+ "grad_norm": 0.3147255778312683,
1799
+ "learning_rate": 7.790610761876936e-06,
1800
+ "loss": 0.6992,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 1.734006734006734,
1805
+ "grad_norm": 0.28082358837127686,
1806
+ "learning_rate": 7.772042673155057e-06,
1807
+ "loss": 0.664,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 1.7407407407407407,
1812
+ "grad_norm": 0.3215820789337158,
1813
+ "learning_rate": 7.753419225427097e-06,
1814
+ "loss": 0.6968,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 1.7474747474747474,
1819
+ "grad_norm": 0.30421900749206543,
1820
+ "learning_rate": 7.734740790612137e-06,
1821
+ "loss": 0.6951,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 1.7542087542087543,
1826
+ "grad_norm": 0.292523592710495,
1827
+ "learning_rate": 7.716007741727368e-06,
1828
+ "loss": 0.6859,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 1.7609427609427608,
1833
+ "grad_norm": 0.301112562417984,
1834
+ "learning_rate": 7.69722045288066e-06,
1835
+ "loss": 0.6942,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 1.7676767676767677,
1840
+ "grad_norm": 0.31593406200408936,
1841
+ "learning_rate": 7.678379299263076e-06,
1842
+ "loss": 0.689,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 1.7744107744107744,
1847
+ "grad_norm": 0.33452534675598145,
1848
+ "learning_rate": 7.659484657141382e-06,
1849
+ "loss": 0.752,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 1.7811447811447811,
1854
+ "grad_norm": 0.3017633259296417,
1855
+ "learning_rate": 7.64053690385054e-06,
1856
+ "loss": 0.7052,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 1.7878787878787878,
1861
+ "grad_norm": 0.28459274768829346,
1862
+ "learning_rate": 7.621536417786159e-06,
1863
+ "loss": 0.6738,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 1.7946127946127945,
1868
+ "grad_norm": 0.2791585624217987,
1869
+ "learning_rate": 7.602483578396955e-06,
1870
+ "loss": 0.6819,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 1.8013468013468015,
1875
+ "grad_norm": 0.3020349144935608,
1876
+ "learning_rate": 7.583378766177163e-06,
1877
+ "loss": 0.72,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 1.808080808080808,
1882
+ "grad_norm": 0.28048840165138245,
1883
+ "learning_rate": 7.564222362658935e-06,
1884
+ "loss": 0.6961,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 1.8148148148148149,
1889
+ "grad_norm": 0.29612207412719727,
1890
+ "learning_rate": 7.54501475040473e-06,
1891
+ "loss": 0.6902,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 1.8215488215488216,
1896
+ "grad_norm": 0.27847015857696533,
1897
+ "learning_rate": 7.52575631299967e-06,
1898
+ "loss": 0.706,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 1.8282828282828283,
1903
+ "grad_norm": 0.29833778738975525,
1904
+ "learning_rate": 7.5064474350438755e-06,
1905
+ "loss": 0.6795,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 1.835016835016835,
1910
+ "grad_norm": 0.30200687050819397,
1911
+ "learning_rate": 7.487088502144793e-06,
1912
+ "loss": 0.672,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 1.8417508417508417,
1917
+ "grad_norm": 0.2916306257247925,
1918
+ "learning_rate": 7.467679900909489e-06,
1919
+ "loss": 0.6495,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 1.8484848484848486,
1924
+ "grad_norm": 0.28734859824180603,
1925
+ "learning_rate": 7.4482220189369295e-06,
1926
+ "loss": 0.6752,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 1.855218855218855,
1931
+ "grad_norm": 0.31577038764953613,
1932
+ "learning_rate": 7.428715244810238e-06,
1933
+ "loss": 0.7235,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 1.861952861952862,
1938
+ "grad_norm": 0.31323179602622986,
1939
+ "learning_rate": 7.4091599680889425e-06,
1940
+ "loss": 0.6839,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 1.8686868686868687,
1945
+ "grad_norm": 0.28605639934539795,
1946
+ "learning_rate": 7.389556579301186e-06,
1947
+ "loss": 0.6638,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 1.8754208754208754,
1952
+ "grad_norm": 0.2822740077972412,
1953
+ "learning_rate": 7.369905469935935e-06,
1954
+ "loss": 0.6982,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 1.8821548821548821,
1959
+ "grad_norm": 0.290394127368927,
1960
+ "learning_rate": 7.350207032435157e-06,
1961
+ "loss": 0.7118,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 1.8888888888888888,
1966
+ "grad_norm": 0.2912713587284088,
1967
+ "learning_rate": 7.330461660185987e-06,
1968
+ "loss": 0.6776,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 1.8956228956228958,
1973
+ "grad_norm": 0.32215046882629395,
1974
+ "learning_rate": 7.3106697475128655e-06,
1975
+ "loss": 0.6909,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 1.9023569023569022,
1980
+ "grad_norm": 0.28878840804100037,
1981
+ "learning_rate": 7.2908316896696725e-06,
1982
+ "loss": 0.6768,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 1.9090909090909092,
1987
+ "grad_norm": 0.32832571864128113,
1988
+ "learning_rate": 7.270947882831823e-06,
1989
+ "loss": 0.7195,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 1.9158249158249159,
1994
+ "grad_norm": 0.32346925139427185,
1995
+ "learning_rate": 7.251018724088367e-06,
1996
+ "loss": 0.6962,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 1.9225589225589226,
2001
+ "grad_norm": 0.32384803891181946,
2002
+ "learning_rate": 7.231044611434049e-06,
2003
+ "loss": 0.6501,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 1.9292929292929293,
2008
+ "grad_norm": 0.3192203640937805,
2009
+ "learning_rate": 7.211025943761367e-06,
2010
+ "loss": 0.712,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 1.936026936026936,
2015
+ "grad_norm": 0.2892184853553772,
2016
+ "learning_rate": 7.190963120852601e-06,
2017
+ "loss": 0.6559,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 1.942760942760943,
2022
+ "grad_norm": 0.30964168906211853,
2023
+ "learning_rate": 7.1708565433718354e-06,
2024
+ "loss": 0.7041,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 1.9494949494949494,
2029
+ "grad_norm": 0.3227485418319702,
2030
+ "learning_rate": 7.150706612856952e-06,
2031
+ "loss": 0.6702,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 1.9562289562289563,
2036
+ "grad_norm": 0.30388596653938293,
2037
+ "learning_rate": 7.130513731711616e-06,
2038
+ "loss": 0.7115,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 1.9629629629629628,
2043
+ "grad_norm": 0.30058157444000244,
2044
+ "learning_rate": 7.1102783031972326e-06,
2045
+ "loss": 0.6723,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 1.9696969696969697,
2050
+ "grad_norm": 0.2957688570022583,
2051
+ "learning_rate": 7.0900007314249e-06,
2052
+ "loss": 0.6609,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 1.9764309764309764,
2057
+ "grad_norm": 0.32087063789367676,
2058
+ "learning_rate": 7.06968142134734e-06,
2059
+ "loss": 0.6666,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 1.9831649831649831,
2064
+ "grad_norm": 0.31820395588874817,
2065
+ "learning_rate": 7.0493207787508034e-06,
2066
+ "loss": 0.6853,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 1.98989898989899,
2071
+ "grad_norm": 0.32074615359306335,
2072
+ "learning_rate": 7.028919210246975e-06,
2073
+ "loss": 0.6757,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 1.9966329966329965,
2078
+ "grad_norm": 0.3086588680744171,
2079
+ "learning_rate": 7.008477123264849e-06,
2080
+ "loss": 0.6955,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 2.006734006734007,
2085
+ "grad_norm": 0.34101998805999756,
2086
+ "learning_rate": 6.987994926042588e-06,
2087
+ "loss": 0.8372,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 2.0134680134680134,
2092
+ "grad_norm": 0.30261072516441345,
2093
+ "learning_rate": 6.967473027619381e-06,
2094
+ "loss": 0.6775,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 2.0202020202020203,
2099
+ "grad_norm": 0.3041035532951355,
2100
+ "learning_rate": 6.946911837827267e-06,
2101
+ "loss": 0.6918,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 2.026936026936027,
2106
+ "grad_norm": 0.3256051242351532,
2107
+ "learning_rate": 6.926311767282951e-06,
2108
+ "loss": 0.7202,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 2.0336700336700337,
2113
+ "grad_norm": 0.31417331099510193,
2114
+ "learning_rate": 6.905673227379606e-06,
2115
+ "loss": 0.7169,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 2.04040404040404,
2120
+ "grad_norm": 0.30272215604782104,
2121
+ "learning_rate": 6.884996630278654e-06,
2122
+ "loss": 0.6821,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 2.047138047138047,
2127
+ "grad_norm": 0.3101252019405365,
2128
+ "learning_rate": 6.864282388901544e-06,
2129
+ "loss": 0.6856,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 2.053872053872054,
2134
+ "grad_norm": 0.2862723767757416,
2135
+ "learning_rate": 6.84353091692149e-06,
2136
+ "loss": 0.6475,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 2.0606060606060606,
2141
+ "grad_norm": 0.30249181389808655,
2142
+ "learning_rate": 6.822742628755228e-06,
2143
+ "loss": 0.6957,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 2.0673400673400675,
2148
+ "grad_norm": 0.3228001892566681,
2149
+ "learning_rate": 6.801917939554721e-06,
2150
+ "loss": 0.6636,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 2.074074074074074,
2155
+ "grad_norm": 0.32464271783828735,
2156
+ "learning_rate": 6.781057265198885e-06,
2157
+ "loss": 0.6734,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 2.080808080808081,
2162
+ "grad_norm": 0.30116304755210876,
2163
+ "learning_rate": 6.760161022285274e-06,
2164
+ "loss": 0.6762,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 2.0875420875420874,
2169
+ "grad_norm": 0.31851866841316223,
2170
+ "learning_rate": 6.739229628121765e-06,
2171
+ "loss": 0.679,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 2.0942760942760943,
2176
+ "grad_norm": 0.30224835872650146,
2177
+ "learning_rate": 6.7182635007182186e-06,
2178
+ "loss": 0.6745,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 2.101010101010101,
2183
+ "grad_norm": 0.3195047676563263,
2184
+ "learning_rate": 6.6972630587781385e-06,
2185
+ "loss": 0.7181,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 2.1077441077441077,
2190
+ "grad_norm": 0.3004336357116699,
2191
+ "learning_rate": 6.676228721690301e-06,
2192
+ "loss": 0.6547,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 2.1144781144781146,
2197
+ "grad_norm": 0.2977725565433502,
2198
+ "learning_rate": 6.655160909520391e-06,
2199
+ "loss": 0.6855,
2200
+ "step": 313
2201
+ },
2202
+ {
2203
+ "epoch": 2.121212121212121,
2204
+ "grad_norm": 0.3015722334384918,
2205
+ "learning_rate": 6.634060043002603e-06,
2206
+ "loss": 0.688,
2207
+ "step": 314
2208
+ },
2209
+ {
2210
+ "epoch": 2.127946127946128,
2211
+ "grad_norm": 0.3413928151130676,
2212
+ "learning_rate": 6.6129265435312405e-06,
2213
+ "loss": 0.7018,
2214
+ "step": 315
2215
+ },
2216
+ {
2217
+ "epoch": 2.1346801346801345,
2218
+ "grad_norm": 0.30066797137260437,
2219
+ "learning_rate": 6.591760833152306e-06,
2220
+ "loss": 0.6873,
2221
+ "step": 316
2222
+ },
2223
+ {
2224
+ "epoch": 2.1414141414141414,
2225
+ "grad_norm": 0.3292277157306671,
2226
+ "learning_rate": 6.570563334555068e-06,
2227
+ "loss": 0.6709,
2228
+ "step": 317
2229
+ },
2230
+ {
2231
+ "epoch": 2.148148148148148,
2232
+ "grad_norm": 0.29609090089797974,
2233
+ "learning_rate": 6.54933447106362e-06,
2234
+ "loss": 0.6582,
2235
+ "step": 318
2236
+ },
2237
+ {
2238
+ "epoch": 2.154882154882155,
2239
+ "grad_norm": 0.3019602596759796,
2240
+ "learning_rate": 6.52807466662843e-06,
2241
+ "loss": 0.7016,
2242
+ "step": 319
2243
+ },
2244
+ {
2245
+ "epoch": 2.1616161616161618,
2246
+ "grad_norm": 0.31941643357276917,
2247
+ "learning_rate": 6.506784345817867e-06,
2248
+ "loss": 0.6852,
2249
+ "step": 320
2250
+ },
2251
+ {
2252
+ "epoch": 2.1683501683501682,
2253
+ "grad_norm": 0.33759576082229614,
2254
+ "learning_rate": 6.48546393380973e-06,
2255
+ "loss": 0.7457,
2256
+ "step": 321
2257
+ },
2258
+ {
2259
+ "epoch": 2.175084175084175,
2260
+ "grad_norm": 0.32998767495155334,
2261
+ "learning_rate": 6.464113856382752e-06,
2262
+ "loss": 0.6925,
2263
+ "step": 322
2264
+ },
2265
+ {
2266
+ "epoch": 2.1818181818181817,
2267
+ "grad_norm": 0.3006787598133087,
2268
+ "learning_rate": 6.4427345399081e-06,
2269
+ "loss": 0.6636,
2270
+ "step": 323
2271
+ },
2272
+ {
2273
+ "epoch": 2.1885521885521886,
2274
+ "grad_norm": 0.31251853704452515,
2275
+ "learning_rate": 6.421326411340855e-06,
2276
+ "loss": 0.663,
2277
+ "step": 324
2278
+ },
2279
+ {
2280
+ "epoch": 2.1952861952861955,
2281
+ "grad_norm": 0.31268492341041565,
2282
+ "learning_rate": 6.399889898211495e-06,
2283
+ "loss": 0.6522,
2284
+ "step": 325
2285
+ },
2286
+ {
2287
+ "epoch": 2.202020202020202,
2288
+ "grad_norm": 0.31962957978248596,
2289
+ "learning_rate": 6.378425428617343e-06,
2290
+ "loss": 0.6674,
2291
+ "step": 326
2292
+ },
2293
+ {
2294
+ "epoch": 2.208754208754209,
2295
+ "grad_norm": 0.29788488149642944,
2296
+ "learning_rate": 6.356933431214034e-06,
2297
+ "loss": 0.6994,
2298
+ "step": 327
2299
+ },
2300
+ {
2301
+ "epoch": 2.2154882154882154,
2302
+ "grad_norm": 0.3490550220012665,
2303
+ "learning_rate": 6.3354143352069415e-06,
2304
+ "loss": 0.6686,
2305
+ "step": 328
2306
+ },
2307
+ {
2308
+ "epoch": 2.2222222222222223,
2309
+ "grad_norm": 0.31461504101753235,
2310
+ "learning_rate": 6.313868570342614e-06,
2311
+ "loss": 0.6635,
2312
+ "step": 329
2313
+ },
2314
+ {
2315
+ "epoch": 2.228956228956229,
2316
+ "grad_norm": 0.3282307982444763,
2317
+ "learning_rate": 6.292296566900187e-06,
2318
+ "loss": 0.689,
2319
+ "step": 330
2320
+ },
2321
+ {
2322
+ "epoch": 2.2356902356902357,
2323
+ "grad_norm": 0.3187669813632965,
2324
+ "learning_rate": 6.270698755682792e-06,
2325
+ "loss": 0.6758,
2326
+ "step": 331
2327
+ },
2328
+ {
2329
+ "epoch": 2.242424242424242,
2330
+ "grad_norm": 0.3053145706653595,
2331
+ "learning_rate": 6.249075568008961e-06,
2332
+ "loss": 0.675,
2333
+ "step": 332
2334
+ },
2335
+ {
2336
+ "epoch": 2.249158249158249,
2337
+ "grad_norm": 0.3063344359397888,
2338
+ "learning_rate": 6.227427435703997e-06,
2339
+ "loss": 0.6877,
2340
+ "step": 333
2341
+ },
2342
+ {
2343
+ "epoch": 2.255892255892256,
2344
+ "grad_norm": 0.3036075532436371,
2345
+ "learning_rate": 6.205754791091364e-06,
2346
+ "loss": 0.6875,
2347
+ "step": 334
2348
+ },
2349
+ {
2350
+ "epoch": 2.2626262626262625,
2351
+ "grad_norm": 0.34430813789367676,
2352
+ "learning_rate": 6.1840580669840455e-06,
2353
+ "loss": 0.7325,
2354
+ "step": 335
2355
+ },
2356
+ {
2357
+ "epoch": 2.2693602693602695,
2358
+ "grad_norm": 0.3094182312488556,
2359
+ "learning_rate": 6.162337696675909e-06,
2360
+ "loss": 0.6818,
2361
+ "step": 336
2362
+ },
2363
+ {
2364
+ "epoch": 2.276094276094276,
2365
+ "grad_norm": 0.3417794704437256,
2366
+ "learning_rate": 6.140594113933043e-06,
2367
+ "loss": 0.6773,
2368
+ "step": 337
2369
+ },
2370
+ {
2371
+ "epoch": 2.282828282828283,
2372
+ "grad_norm": 0.33146169781684875,
2373
+ "learning_rate": 6.1188277529851015e-06,
2374
+ "loss": 0.6962,
2375
+ "step": 338
2376
+ },
2377
+ {
2378
+ "epoch": 2.28956228956229,
2379
+ "grad_norm": 0.3180915415287018,
2380
+ "learning_rate": 6.097039048516628e-06,
2381
+ "loss": 0.661,
2382
+ "step": 339
2383
+ },
2384
+ {
2385
+ "epoch": 2.2962962962962963,
2386
+ "grad_norm": 0.30588653683662415,
2387
+ "learning_rate": 6.075228435658379e-06,
2388
+ "loss": 0.6746,
2389
+ "step": 340
2390
+ },
2391
+ {
2392
+ "epoch": 2.303030303030303,
2393
+ "grad_norm": 0.3140996992588043,
2394
+ "learning_rate": 6.053396349978632e-06,
2395
+ "loss": 0.662,
2396
+ "step": 341
2397
+ },
2398
+ {
2399
+ "epoch": 2.3097643097643097,
2400
+ "grad_norm": 0.2963620722293854,
2401
+ "learning_rate": 6.031543227474486e-06,
2402
+ "loss": 0.62,
2403
+ "step": 342
2404
+ },
2405
+ {
2406
+ "epoch": 2.3164983164983166,
2407
+ "grad_norm": 0.32323580980300903,
2408
+ "learning_rate": 6.009669504563154e-06,
2409
+ "loss": 0.6728,
2410
+ "step": 343
2411
+ },
2412
+ {
2413
+ "epoch": 2.323232323232323,
2414
+ "grad_norm": 0.33873456716537476,
2415
+ "learning_rate": 5.9877756180732505e-06,
2416
+ "loss": 0.6658,
2417
+ "step": 344
2418
+ },
2419
+ {
2420
+ "epoch": 2.32996632996633,
2421
+ "grad_norm": 0.3323650658130646,
2422
+ "learning_rate": 5.965862005236067e-06,
2423
+ "loss": 0.7106,
2424
+ "step": 345
2425
+ },
2426
+ {
2427
+ "epoch": 2.3367003367003365,
2428
+ "grad_norm": 0.30574050545692444,
2429
+ "learning_rate": 5.943929103676839e-06,
2430
+ "loss": 0.6791,
2431
+ "step": 346
2432
+ },
2433
+ {
2434
+ "epoch": 2.3434343434343434,
2435
+ "grad_norm": 0.3394505977630615,
2436
+ "learning_rate": 5.921977351406004e-06,
2437
+ "loss": 0.6929,
2438
+ "step": 347
2439
+ },
2440
+ {
2441
+ "epoch": 2.3501683501683504,
2442
+ "grad_norm": 0.3277929425239563,
2443
+ "learning_rate": 5.900007186810461e-06,
2444
+ "loss": 0.6757,
2445
+ "step": 348
2446
+ },
2447
+ {
2448
+ "epoch": 2.356902356902357,
2449
+ "grad_norm": 0.33306998014450073,
2450
+ "learning_rate": 5.878019048644812e-06,
2451
+ "loss": 0.6909,
2452
+ "step": 349
2453
+ },
2454
+ {
2455
+ "epoch": 2.3636363636363638,
2456
+ "grad_norm": 0.34115421772003174,
2457
+ "learning_rate": 5.856013376022594e-06,
2458
+ "loss": 0.7159,
2459
+ "step": 350
2460
+ },
2461
+ {
2462
+ "epoch": 2.3703703703703702,
2463
+ "grad_norm": 0.32741618156433105,
2464
+ "learning_rate": 5.833990608407525e-06,
2465
+ "loss": 0.6522,
2466
+ "step": 351
2467
+ },
2468
+ {
2469
+ "epoch": 2.377104377104377,
2470
+ "grad_norm": 0.30264726281166077,
2471
+ "learning_rate": 5.811951185604709e-06,
2472
+ "loss": 0.6774,
2473
+ "step": 352
2474
+ },
2475
+ {
2476
+ "epoch": 2.3838383838383836,
2477
+ "grad_norm": 0.31635618209838867,
2478
+ "learning_rate": 5.789895547751867e-06,
2479
+ "loss": 0.6415,
2480
+ "step": 353
2481
+ },
2482
+ {
2483
+ "epoch": 2.3905723905723906,
2484
+ "grad_norm": 0.3575221598148346,
2485
+ "learning_rate": 5.767824135310538e-06,
2486
+ "loss": 0.6525,
2487
+ "step": 354
2488
+ },
2489
+ {
2490
+ "epoch": 2.3973063973063975,
2491
+ "grad_norm": 0.3207171857357025,
2492
+ "learning_rate": 5.745737389057294e-06,
2493
+ "loss": 0.6584,
2494
+ "step": 355
2495
+ },
2496
+ {
2497
+ "epoch": 2.404040404040404,
2498
+ "grad_norm": 0.3243761360645294,
2499
+ "learning_rate": 5.723635750074924e-06,
2500
+ "loss": 0.6651,
2501
+ "step": 356
2502
+ },
2503
+ {
2504
+ "epoch": 2.410774410774411,
2505
+ "grad_norm": 0.318534255027771,
2506
+ "learning_rate": 5.701519659743636e-06,
2507
+ "loss": 0.6829,
2508
+ "step": 357
2509
+ },
2510
+ {
2511
+ "epoch": 2.4175084175084174,
2512
+ "grad_norm": 0.33522891998291016,
2513
+ "learning_rate": 5.679389559732234e-06,
2514
+ "loss": 0.6908,
2515
+ "step": 358
2516
+ },
2517
+ {
2518
+ "epoch": 2.4242424242424243,
2519
+ "grad_norm": 0.32205212116241455,
2520
+ "learning_rate": 5.657245891989307e-06,
2521
+ "loss": 0.6681,
2522
+ "step": 359
2523
+ },
2524
+ {
2525
+ "epoch": 2.430976430976431,
2526
+ "grad_norm": 0.3299495279788971,
2527
+ "learning_rate": 5.635089098734394e-06,
2528
+ "loss": 0.6678,
2529
+ "step": 360
2530
+ },
2531
+ {
2532
+ "epoch": 2.4377104377104377,
2533
+ "grad_norm": 0.329253226518631,
2534
+ "learning_rate": 5.61291962244916e-06,
2535
+ "loss": 0.668,
2536
+ "step": 361
2537
+ },
2538
+ {
2539
+ "epoch": 2.4444444444444446,
2540
+ "grad_norm": 0.3404013216495514,
2541
+ "learning_rate": 5.59073790586855e-06,
2542
+ "loss": 0.6334,
2543
+ "step": 362
2544
+ },
2545
+ {
2546
+ "epoch": 2.451178451178451,
2547
+ "grad_norm": 0.33572322130203247,
2548
+ "learning_rate": 5.568544391971964e-06,
2549
+ "loss": 0.6728,
2550
+ "step": 363
2551
+ },
2552
+ {
2553
+ "epoch": 2.457912457912458,
2554
+ "grad_norm": 0.33126330375671387,
2555
+ "learning_rate": 5.546339523974389e-06,
2556
+ "loss": 0.6262,
2557
+ "step": 364
2558
+ },
2559
+ {
2560
+ "epoch": 2.4646464646464645,
2561
+ "grad_norm": 0.3154200613498688,
2562
+ "learning_rate": 5.5241237453175664e-06,
2563
+ "loss": 0.6421,
2564
+ "step": 365
2565
+ },
2566
+ {
2567
+ "epoch": 2.4713804713804715,
2568
+ "grad_norm": 0.3080921173095703,
2569
+ "learning_rate": 5.501897499661123e-06,
2570
+ "loss": 0.66,
2571
+ "step": 366
2572
+ },
2573
+ {
2574
+ "epoch": 2.478114478114478,
2575
+ "grad_norm": 0.3175220191478729,
2576
+ "learning_rate": 5.4796612308737225e-06,
2577
+ "loss": 0.6566,
2578
+ "step": 367
2579
+ },
2580
+ {
2581
+ "epoch": 2.484848484848485,
2582
+ "grad_norm": 0.3048228621482849,
2583
+ "learning_rate": 5.4574153830241905e-06,
2584
+ "loss": 0.6684,
2585
+ "step": 368
2586
+ },
2587
+ {
2588
+ "epoch": 2.4915824915824913,
2589
+ "grad_norm": 0.3418152630329132,
2590
+ "learning_rate": 5.435160400372653e-06,
2591
+ "loss": 0.7178,
2592
+ "step": 369
2593
+ },
2594
+ {
2595
+ "epoch": 2.4983164983164983,
2596
+ "grad_norm": 0.34362682700157166,
2597
+ "learning_rate": 5.412896727361663e-06,
2598
+ "loss": 0.6925,
2599
+ "step": 370
2600
+ },
2601
+ {
2602
+ "epoch": 2.505050505050505,
2603
+ "grad_norm": 0.30840158462524414,
2604
+ "learning_rate": 5.390624808607321e-06,
2605
+ "loss": 0.637,
2606
+ "step": 371
2607
+ },
2608
+ {
2609
+ "epoch": 2.5117845117845117,
2610
+ "grad_norm": 0.33842259645462036,
2611
+ "learning_rate": 5.368345088890401e-06,
2612
+ "loss": 0.7088,
2613
+ "step": 372
2614
+ },
2615
+ {
2616
+ "epoch": 2.5185185185185186,
2617
+ "grad_norm": 0.34740138053894043,
2618
+ "learning_rate": 5.34605801314747e-06,
2619
+ "loss": 0.6908,
2620
+ "step": 373
2621
+ },
2622
+ {
2623
+ "epoch": 2.525252525252525,
2624
+ "grad_norm": 0.35594460368156433,
2625
+ "learning_rate": 5.323764026461988e-06,
2626
+ "loss": 0.6766,
2627
+ "step": 374
2628
+ },
2629
+ {
2630
+ "epoch": 2.531986531986532,
2631
+ "grad_norm": 0.3934316635131836,
2632
+ "learning_rate": 5.301463574055441e-06,
2633
+ "loss": 0.6603,
2634
+ "step": 375
2635
+ },
2636
+ {
2637
+ "epoch": 2.538720538720539,
2638
+ "grad_norm": 0.3513649106025696,
2639
+ "learning_rate": 5.279157101278433e-06,
2640
+ "loss": 0.6872,
2641
+ "step": 376
2642
+ },
2643
+ {
2644
+ "epoch": 2.5454545454545454,
2645
+ "grad_norm": 0.38326022028923035,
2646
+ "learning_rate": 5.256845053601795e-06,
2647
+ "loss": 0.6723,
2648
+ "step": 377
2649
+ },
2650
+ {
2651
+ "epoch": 2.5521885521885523,
2652
+ "grad_norm": 0.35960447788238525,
2653
+ "learning_rate": 5.234527876607698e-06,
2654
+ "loss": 0.6664,
2655
+ "step": 378
2656
+ },
2657
+ {
2658
+ "epoch": 2.558922558922559,
2659
+ "grad_norm": 0.3370625674724579,
2660
+ "learning_rate": 5.212206015980742e-06,
2661
+ "loss": 0.6935,
2662
+ "step": 379
2663
+ },
2664
+ {
2665
+ "epoch": 2.5656565656565657,
2666
+ "grad_norm": 0.3355901837348938,
2667
+ "learning_rate": 5.189879917499067e-06,
2668
+ "loss": 0.6628,
2669
+ "step": 380
2670
+ },
2671
+ {
2672
+ "epoch": 2.5723905723905722,
2673
+ "grad_norm": 0.33717080950737,
2674
+ "learning_rate": 5.1675500270254385e-06,
2675
+ "loss": 0.6683,
2676
+ "step": 381
2677
+ },
2678
+ {
2679
+ "epoch": 2.579124579124579,
2680
+ "grad_norm": 0.3160232603549957,
2681
+ "learning_rate": 5.145216790498355e-06,
2682
+ "loss": 0.6727,
2683
+ "step": 382
2684
+ },
2685
+ {
2686
+ "epoch": 2.5858585858585856,
2687
+ "grad_norm": 0.3072569668292999,
2688
+ "learning_rate": 5.122880653923134e-06,
2689
+ "loss": 0.6664,
2690
+ "step": 383
2691
+ },
2692
+ {
2693
+ "epoch": 2.5925925925925926,
2694
+ "grad_norm": 0.3160644471645355,
2695
+ "learning_rate": 5.100542063363013e-06,
2696
+ "loss": 0.6614,
2697
+ "step": 384
2698
+ },
2699
+ {
2700
+ "epoch": 2.5993265993265995,
2701
+ "grad_norm": 0.33290305733680725,
2702
+ "learning_rate": 5.07820146493023e-06,
2703
+ "loss": 0.6872,
2704
+ "step": 385
2705
+ },
2706
+ {
2707
+ "epoch": 2.606060606060606,
2708
+ "grad_norm": 0.3331235647201538,
2709
+ "learning_rate": 5.055859304777127e-06,
2710
+ "loss": 0.6443,
2711
+ "step": 386
2712
+ },
2713
+ {
2714
+ "epoch": 2.612794612794613,
2715
+ "grad_norm": 0.3328459560871124,
2716
+ "learning_rate": 5.033516029087231e-06,
2717
+ "loss": 0.6589,
2718
+ "step": 387
2719
+ },
2720
+ {
2721
+ "epoch": 2.6195286195286194,
2722
+ "grad_norm": 0.3131551742553711,
2723
+ "learning_rate": 5.011172084066349e-06,
2724
+ "loss": 0.648,
2725
+ "step": 388
2726
+ },
2727
+ {
2728
+ "epoch": 2.6262626262626263,
2729
+ "grad_norm": 0.318933367729187,
2730
+ "learning_rate": 4.988827915933652e-06,
2731
+ "loss": 0.648,
2732
+ "step": 389
2733
+ },
2734
+ {
2735
+ "epoch": 2.6329966329966332,
2736
+ "grad_norm": 0.3695783019065857,
2737
+ "learning_rate": 4.966483970912769e-06,
2738
+ "loss": 0.6652,
2739
+ "step": 390
2740
+ },
2741
+ {
2742
+ "epoch": 2.6397306397306397,
2743
+ "grad_norm": 0.34661394357681274,
2744
+ "learning_rate": 4.944140695222874e-06,
2745
+ "loss": 0.6863,
2746
+ "step": 391
2747
+ },
2748
+ {
2749
+ "epoch": 2.6464646464646466,
2750
+ "grad_norm": 0.3176628351211548,
2751
+ "learning_rate": 4.92179853506977e-06,
2752
+ "loss": 0.6591,
2753
+ "step": 392
2754
+ },
2755
+ {
2756
+ "epoch": 2.653198653198653,
2757
+ "grad_norm": 0.3425232470035553,
2758
+ "learning_rate": 4.899457936636988e-06,
2759
+ "loss": 0.6772,
2760
+ "step": 393
2761
+ },
2762
+ {
2763
+ "epoch": 2.65993265993266,
2764
+ "grad_norm": 0.32734331488609314,
2765
+ "learning_rate": 4.877119346076868e-06,
2766
+ "loss": 0.6877,
2767
+ "step": 394
2768
+ },
2769
+ {
2770
+ "epoch": 2.6666666666666665,
2771
+ "grad_norm": 0.35816332697868347,
2772
+ "learning_rate": 4.854783209501646e-06,
2773
+ "loss": 0.6625,
2774
+ "step": 395
2775
+ },
2776
+ {
2777
+ "epoch": 2.6734006734006734,
2778
+ "grad_norm": 0.322437584400177,
2779
+ "learning_rate": 4.832449972974564e-06,
2780
+ "loss": 0.6639,
2781
+ "step": 396
2782
+ },
2783
+ {
2784
+ "epoch": 2.68013468013468,
2785
+ "grad_norm": 0.3232383131980896,
2786
+ "learning_rate": 4.810120082500934e-06,
2787
+ "loss": 0.6987,
2788
+ "step": 397
2789
+ },
2790
+ {
2791
+ "epoch": 2.686868686868687,
2792
+ "grad_norm": 0.33261874318122864,
2793
+ "learning_rate": 4.78779398401926e-06,
2794
+ "loss": 0.6815,
2795
+ "step": 398
2796
+ },
2797
+ {
2798
+ "epoch": 2.6936026936026938,
2799
+ "grad_norm": 0.3170070946216583,
2800
+ "learning_rate": 4.765472123392304e-06,
2801
+ "loss": 0.6881,
2802
+ "step": 399
2803
+ },
2804
+ {
2805
+ "epoch": 2.7003367003367003,
2806
+ "grad_norm": 0.32975471019744873,
2807
+ "learning_rate": 4.743154946398207e-06,
2808
+ "loss": 0.6482,
2809
+ "step": 400
2810
+ },
2811
+ {
2812
+ "epoch": 2.707070707070707,
2813
+ "grad_norm": 0.3293749988079071,
2814
+ "learning_rate": 4.720842898721569e-06,
2815
+ "loss": 0.629,
2816
+ "step": 401
2817
+ },
2818
+ {
2819
+ "epoch": 2.7138047138047137,
2820
+ "grad_norm": 0.3324597477912903,
2821
+ "learning_rate": 4.698536425944561e-06,
2822
+ "loss": 0.6978,
2823
+ "step": 402
2824
+ },
2825
+ {
2826
+ "epoch": 2.7205387205387206,
2827
+ "grad_norm": 0.3278536796569824,
2828
+ "learning_rate": 4.6762359735380135e-06,
2829
+ "loss": 0.6663,
2830
+ "step": 403
2831
+ },
2832
+ {
2833
+ "epoch": 2.7272727272727275,
2834
+ "grad_norm": 0.33780574798583984,
2835
+ "learning_rate": 4.653941986852533e-06,
2836
+ "loss": 0.6926,
2837
+ "step": 404
2838
+ },
2839
+ {
2840
+ "epoch": 2.734006734006734,
2841
+ "grad_norm": 0.35599419474601746,
2842
+ "learning_rate": 4.6316549111096e-06,
2843
+ "loss": 0.6759,
2844
+ "step": 405
2845
+ },
2846
+ {
2847
+ "epoch": 2.7407407407407405,
2848
+ "grad_norm": 0.32220327854156494,
2849
+ "learning_rate": 4.60937519139268e-06,
2850
+ "loss": 0.6677,
2851
+ "step": 406
2852
+ },
2853
+ {
2854
+ "epoch": 2.7474747474747474,
2855
+ "grad_norm": 0.32263022661209106,
2856
+ "learning_rate": 4.587103272638339e-06,
2857
+ "loss": 0.6727,
2858
+ "step": 407
2859
+ },
2860
+ {
2861
+ "epoch": 2.7542087542087543,
2862
+ "grad_norm": 0.32157519459724426,
2863
+ "learning_rate": 4.564839599627347e-06,
2864
+ "loss": 0.6603,
2865
+ "step": 408
2866
+ },
2867
+ {
2868
+ "epoch": 2.760942760942761,
2869
+ "grad_norm": 0.32805973291397095,
2870
+ "learning_rate": 4.542584616975811e-06,
2871
+ "loss": 0.6964,
2872
+ "step": 409
2873
+ },
2874
+ {
2875
+ "epoch": 2.7676767676767677,
2876
+ "grad_norm": 0.37896931171417236,
2877
+ "learning_rate": 4.5203387691262774e-06,
2878
+ "loss": 0.6656,
2879
+ "step": 410
2880
+ },
2881
+ {
2882
+ "epoch": 2.774410774410774,
2883
+ "grad_norm": 0.35789135098457336,
2884
+ "learning_rate": 4.498102500338879e-06,
2885
+ "loss": 0.6379,
2886
+ "step": 411
2887
+ },
2888
+ {
2889
+ "epoch": 2.781144781144781,
2890
+ "grad_norm": 0.3611665368080139,
2891
+ "learning_rate": 4.475876254682436e-06,
2892
+ "loss": 0.6765,
2893
+ "step": 412
2894
+ },
2895
+ {
2896
+ "epoch": 2.787878787878788,
2897
+ "grad_norm": 0.3591862618923187,
2898
+ "learning_rate": 4.453660476025612e-06,
2899
+ "loss": 0.6686,
2900
+ "step": 413
2901
+ },
2902
+ {
2903
+ "epoch": 2.7946127946127945,
2904
+ "grad_norm": 0.32585394382476807,
2905
+ "learning_rate": 4.431455608028038e-06,
2906
+ "loss": 0.6655,
2907
+ "step": 414
2908
+ },
2909
+ {
2910
+ "epoch": 2.8013468013468015,
2911
+ "grad_norm": 0.32006388902664185,
2912
+ "learning_rate": 4.40926209413145e-06,
2913
+ "loss": 0.6695,
2914
+ "step": 415
2915
+ },
2916
+ {
2917
+ "epoch": 2.808080808080808,
2918
+ "grad_norm": 0.3642265200614929,
2919
+ "learning_rate": 4.387080377550843e-06,
2920
+ "loss": 0.643,
2921
+ "step": 416
2922
+ },
2923
+ {
2924
+ "epoch": 2.814814814814815,
2925
+ "grad_norm": 0.3640241026878357,
2926
+ "learning_rate": 4.364910901265607e-06,
2927
+ "loss": 0.6859,
2928
+ "step": 417
2929
+ },
2930
+ {
2931
+ "epoch": 2.821548821548822,
2932
+ "grad_norm": 0.31810638308525085,
2933
+ "learning_rate": 4.342754108010695e-06,
2934
+ "loss": 0.6802,
2935
+ "step": 418
2936
+ },
2937
+ {
2938
+ "epoch": 2.8282828282828283,
2939
+ "grad_norm": 0.3474580645561218,
2940
+ "learning_rate": 4.320610440267766e-06,
2941
+ "loss": 0.6944,
2942
+ "step": 419
2943
+ },
2944
+ {
2945
+ "epoch": 2.8350168350168348,
2946
+ "grad_norm": 0.340483695268631,
2947
+ "learning_rate": 4.298480340256365e-06,
2948
+ "loss": 0.663,
2949
+ "step": 420
2950
+ },
2951
+ {
2952
+ "epoch": 2.8417508417508417,
2953
+ "grad_norm": 0.320322185754776,
2954
+ "learning_rate": 4.2763642499250765e-06,
2955
+ "loss": 0.6115,
2956
+ "step": 421
2957
+ },
2958
+ {
2959
+ "epoch": 2.8484848484848486,
2960
+ "grad_norm": 0.33514732122421265,
2961
+ "learning_rate": 4.254262610942707e-06,
2962
+ "loss": 0.6722,
2963
+ "step": 422
2964
+ },
2965
+ {
2966
+ "epoch": 2.855218855218855,
2967
+ "grad_norm": 0.3475134074687958,
2968
+ "learning_rate": 4.232175864689464e-06,
2969
+ "loss": 0.6517,
2970
+ "step": 423
2971
+ },
2972
+ {
2973
+ "epoch": 2.861952861952862,
2974
+ "grad_norm": 0.32075583934783936,
2975
+ "learning_rate": 4.210104452248135e-06,
2976
+ "loss": 0.6677,
2977
+ "step": 424
2978
+ },
2979
+ {
2980
+ "epoch": 2.8686868686868685,
2981
+ "grad_norm": 0.350498229265213,
2982
+ "learning_rate": 4.188048814395293e-06,
2983
+ "loss": 0.6616,
2984
+ "step": 425
2985
+ },
2986
+ {
2987
+ "epoch": 2.8754208754208754,
2988
+ "grad_norm": 0.3592052161693573,
2989
+ "learning_rate": 4.166009391592476e-06,
2990
+ "loss": 0.6494,
2991
+ "step": 426
2992
+ },
2993
+ {
2994
+ "epoch": 2.8821548821548824,
2995
+ "grad_norm": 0.32770347595214844,
2996
+ "learning_rate": 4.1439866239774065e-06,
2997
+ "loss": 0.6604,
2998
+ "step": 427
2999
+ },
3000
+ {
3001
+ "epoch": 2.888888888888889,
3002
+ "grad_norm": 0.34549760818481445,
3003
+ "learning_rate": 4.12198095135519e-06,
3004
+ "loss": 0.657,
3005
+ "step": 428
3006
+ },
3007
+ {
3008
+ "epoch": 2.8956228956228958,
3009
+ "grad_norm": 0.3358047604560852,
3010
+ "learning_rate": 4.09999281318954e-06,
3011
+ "loss": 0.6635,
3012
+ "step": 429
3013
+ },
3014
+ {
3015
+ "epoch": 2.9023569023569022,
3016
+ "grad_norm": 0.3430233299732208,
3017
+ "learning_rate": 4.078022648593997e-06,
3018
+ "loss": 0.6589,
3019
+ "step": 430
3020
+ },
3021
+ {
3022
+ "epoch": 2.909090909090909,
3023
+ "grad_norm": 0.3354911208152771,
3024
+ "learning_rate": 4.056070896323163e-06,
3025
+ "loss": 0.6881,
3026
+ "step": 431
3027
+ },
3028
+ {
3029
+ "epoch": 2.915824915824916,
3030
+ "grad_norm": 0.3450566828250885,
3031
+ "learning_rate": 4.034137994763934e-06,
3032
+ "loss": 0.6407,
3033
+ "step": 432
3034
+ },
3035
+ {
3036
+ "epoch": 2.9225589225589226,
3037
+ "grad_norm": 0.32240331172943115,
3038
+ "learning_rate": 4.01222438192675e-06,
3039
+ "loss": 0.6892,
3040
+ "step": 433
3041
+ },
3042
+ {
3043
+ "epoch": 2.929292929292929,
3044
+ "grad_norm": 0.3347194790840149,
3045
+ "learning_rate": 3.990330495436848e-06,
3046
+ "loss": 0.6664,
3047
+ "step": 434
3048
+ },
3049
+ {
3050
+ "epoch": 2.936026936026936,
3051
+ "grad_norm": 0.354972779750824,
3052
+ "learning_rate": 3.968456772525515e-06,
3053
+ "loss": 0.6419,
3054
+ "step": 435
3055
+ },
3056
+ {
3057
+ "epoch": 2.942760942760943,
3058
+ "grad_norm": 0.3557754456996918,
3059
+ "learning_rate": 3.94660365002137e-06,
3060
+ "loss": 0.6996,
3061
+ "step": 436
3062
+ },
3063
+ {
3064
+ "epoch": 2.9494949494949494,
3065
+ "grad_norm": 0.35374686121940613,
3066
+ "learning_rate": 3.924771564341621e-06,
3067
+ "loss": 0.6786,
3068
+ "step": 437
3069
+ },
3070
+ {
3071
+ "epoch": 2.9562289562289563,
3072
+ "grad_norm": 0.3219892680644989,
3073
+ "learning_rate": 3.902960951483375e-06,
3074
+ "loss": 0.6512,
3075
+ "step": 438
3076
+ },
3077
+ {
3078
+ "epoch": 2.962962962962963,
3079
+ "grad_norm": 0.36575546860694885,
3080
+ "learning_rate": 3.881172247014899e-06,
3081
+ "loss": 0.6893,
3082
+ "step": 439
3083
+ },
3084
+ {
3085
+ "epoch": 2.9696969696969697,
3086
+ "grad_norm": 0.3633718490600586,
3087
+ "learning_rate": 3.859405886066959e-06,
3088
+ "loss": 0.6841,
3089
+ "step": 440
3090
+ },
3091
+ {
3092
+ "epoch": 2.9764309764309766,
3093
+ "grad_norm": 0.3494553565979004,
3094
+ "learning_rate": 3.837662303324093e-06,
3095
+ "loss": 0.6643,
3096
+ "step": 441
3097
+ },
3098
+ {
3099
+ "epoch": 2.983164983164983,
3100
+ "grad_norm": 0.3369433283805847,
3101
+ "learning_rate": 3.815941933015956e-06,
3102
+ "loss": 0.648,
3103
+ "step": 442
3104
+ },
3105
+ {
3106
+ "epoch": 2.98989898989899,
3107
+ "grad_norm": 0.33903154730796814,
3108
+ "learning_rate": 3.794245208908639e-06,
3109
+ "loss": 0.6514,
3110
+ "step": 443
3111
+ },
3112
+ {
3113
+ "epoch": 2.9966329966329965,
3114
+ "grad_norm": 0.3544797897338867,
3115
+ "learning_rate": 3.7725725642960047e-06,
3116
+ "loss": 0.6624,
3117
+ "step": 444
3118
+ }
3119
+ ],
3120
+ "logging_steps": 1,
3121
+ "max_steps": 740,
3122
+ "num_input_tokens_seen": 0,
3123
+ "num_train_epochs": 5,
3124
+ "save_steps": 500,
3125
+ "stateful_callbacks": {
3126
+ "TrainerControl": {
3127
+ "args": {
3128
+ "should_epoch_stop": false,
3129
+ "should_evaluate": false,
3130
+ "should_log": false,
3131
+ "should_save": true,
3132
+ "should_training_stop": false
3133
+ },
3134
+ "attributes": {}
3135
+ }
3136
+ },
3137
+ "total_flos": 3.92370854035456e+17,
3138
+ "train_batch_size": 1,
3139
+ "trial_name": null,
3140
+ "trial_params": null
3141
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac9ff54961c96c7c3f6b270b9ec39ea99fc537b992005e1314bb5d6de7e46a7c
3
+ size 5752
vocab.json ADDED
The diff for this file is too large to render. See raw diff