Commit
·
6e54ab0
1
Parent(s):
65d1167
Create Bot
Browse files
Bot
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
2 |
+
from rdflib import Graph
|
3 |
+
from datasets import load_dataset
|
4 |
+
from transformers import pipeline
|
5 |
+
from transformers import TextQueryProcessor, QuestionAnswerer
|
6 |
+
from gradio import Interface
|
7 |
+
|
8 |
+
# Define specializations and subfields
|
9 |
+
SPECIALIZATIONS = {
|
10 |
+
"Science": {"subfields": ["Physics", "Biology", "Chemistry"]},
|
11 |
+
"History": {"subfields": ["Ancient", "Medieval", "Modern"]},
|
12 |
+
"Art": {"subfields": ["Literature", "Visual", "Music"]},
|
13 |
+
}
|
14 |
+
|
15 |
+
# Define knowledge graph for each specialization
|
16 |
+
knowledge_graphs = {
|
17 |
+
specialization: Graph() for specialization in SPECIALIZATIONS.keys()
|
18 |
+
}
|
19 |
+
|
20 |
+
# Define Hugging Face models and pipelines
|
21 |
+
model_names = {
|
22 |
+
"Physics": "allenai/bart-large-cc2",
|
23 |
+
"Biology": "bert-base-uncased-finetuned-squad",
|
24 |
+
"Chemistry": "allenai/biobert-base",
|
25 |
+
"Ancient": "facebook/bart-base-uncased-cnn",
|
26 |
+
"Medieval": "distilbert-base-uncased-finetuned-squad",
|
27 |
+
"Modern": "allenai/longformer-base-4096",
|
28 |
+
"Literature": "gpt2-large",
|
29 |
+
"Visual": "autoencoder/bart-encoder",
|
30 |
+
"Music": "openai/music-gpt",
|
31 |
+
}
|
32 |
+
|
33 |
+
models = {
|
34 |
+
specialization: AutoModelForSeq2SeqLM.from_pretrained(model_names[specialization])
|
35 |
+
for specialization in model_names.keys()
|
36 |
+
}
|
37 |
+
|
38 |
+
tokenizers = {
|
39 |
+
specialization: AutoTokenizer.from_pretrained(model_names[specialization])
|
40 |
+
for specialization in model_names.keys()
|
41 |
+
}
|
42 |
+
|
43 |
+
qa_processor = TextQueryProcessor.from_pretrained("allenai/bart-large")
|
44 |
+
qa_model = QuestionAnswerer.from_pretrained("allenai/bart-large")
|
45 |
+
|
46 |
+
# Generation pipeline for creative text formats
|
47 |
+
generation_pipeline = pipeline("text-generation", model="gpt2", top_k=5)
|
48 |
+
|
49 |
+
# Interactive interface
|
50 |
+
interface = Interface(
|
51 |
+
fn=interact,
|
52 |
+
inputs=["text", "specialization"],
|
53 |
+
outputs=["text"],
|
54 |
+
title="AI Chatbot Civilization",
|
55 |
+
description="Interact with a generation of chatbots!",
|
56 |
+
)
|
57 |
+
|
58 |
+
def interact(text, specialization):
|
59 |
+
"""Interact with a chatbot based on prompt and specialization."""
|
60 |
+
# Choose a chatbot from the current generation
|
61 |
+
chatbot = Chatbot(specialization)
|
62 |
+
|
63 |
+
# Process the prompt and identify relevant knowledge
|
64 |
+
processed_prompt = process_prompt(text, specialization)
|
65 |
+
|
66 |
+
# Generate response using specialization model
|
67 |
+
response = models[specialization].generate(
|
68 |
+
input_ids=tokenizers[specialization](
|
69 |
+
processed_prompt, return_tensors="pt"
|
70 |
+
).input_ids
|
71 |
+
)
|
72 |
+
|
73 |
+
# Check for knowledge graph consultation request
|
74 |
+
if response.sequences[0].decode() == "Consult":
|
75 |
+
# Use QA model and knowledge graph to answer question
|
76 |
+
answer = qa_model(qa_processor(text, knowledge_graphs[specialization]))
|
77 |
+
return answer["answer"]
|
78 |
+
|
79 |
+
# Use generation pipeline for creative formats
|
80 |
+
if need_creative_format(text):
|
81 |
+
return generation_pipeline(text, max_length=50)
|
82 |
+
|
83 |
+
return response.sequences[0].decode()
|
84 |
+
|
85 |
+
def process_prompt(text, specialization):
|
86 |
+
"""Preprocess prompt based on specialization and subfield."""
|
87 |
+
# Use subfield-specific data and techniques here
|
88 |
+
# Example: extract chemical equations for "Chemistry" prompts
|
89 |
+
return text
|
90 |
+
|
91 |
+
def need_creative_format(text):
|
92 |
+
"""Check if prompt requires creative text generation."""
|
93 |
+
# Use keywords, patterns, or other techniques to identify
|
94 |
+
# Example: "Write a poem about..." or "Compose a melody like..."
|
95 |
+
return False
|
96 |
+
|
97 |
+
def learn(data, specialization):
|
98 |
+
"""Update knowledge graph and fine-tune model based on data."""
|
99 |
+
# Use RDF and Hugging Face datasets/fine-tuning techniques
|
100 |
+
# Update knowledge_graphs and models dictionaries
|
101 |
+
pass
|
102 |
+
|
103 |
+
def mutate(chatbot):
|
104 |
+
"""Create a new chatbot with potentially mutated specialization."""
|
105 |
+
# Implement logic for specialization mutation based on generation
|
106 |
+
# Update chatbot.specialization and potentially subfield
|
107 |
+
pass
|
108 |
+
|
109 |
+
# Generate the first generation
|
110 |
+
chatbots = [Chatbot(specialization) for specialization in SPECIALIZATIONS.keys()]
|
111 |
+
|
112 |
+
# Simulate generations with learning, interaction
|