Vinnybustacap commited on
Commit
6e54ab0
·
1 Parent(s): 65d1167

Create Bot

Browse files
Files changed (1) hide show
  1. Bot +112 -0
Bot ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
2
+ from rdflib import Graph
3
+ from datasets import load_dataset
4
+ from transformers import pipeline
5
+ from transformers import TextQueryProcessor, QuestionAnswerer
6
+ from gradio import Interface
7
+
8
+ # Define specializations and subfields
9
+ SPECIALIZATIONS = {
10
+ "Science": {"subfields": ["Physics", "Biology", "Chemistry"]},
11
+ "History": {"subfields": ["Ancient", "Medieval", "Modern"]},
12
+ "Art": {"subfields": ["Literature", "Visual", "Music"]},
13
+ }
14
+
15
+ # Define knowledge graph for each specialization
16
+ knowledge_graphs = {
17
+ specialization: Graph() for specialization in SPECIALIZATIONS.keys()
18
+ }
19
+
20
+ # Define Hugging Face models and pipelines
21
+ model_names = {
22
+ "Physics": "allenai/bart-large-cc2",
23
+ "Biology": "bert-base-uncased-finetuned-squad",
24
+ "Chemistry": "allenai/biobert-base",
25
+ "Ancient": "facebook/bart-base-uncased-cnn",
26
+ "Medieval": "distilbert-base-uncased-finetuned-squad",
27
+ "Modern": "allenai/longformer-base-4096",
28
+ "Literature": "gpt2-large",
29
+ "Visual": "autoencoder/bart-encoder",
30
+ "Music": "openai/music-gpt",
31
+ }
32
+
33
+ models = {
34
+ specialization: AutoModelForSeq2SeqLM.from_pretrained(model_names[specialization])
35
+ for specialization in model_names.keys()
36
+ }
37
+
38
+ tokenizers = {
39
+ specialization: AutoTokenizer.from_pretrained(model_names[specialization])
40
+ for specialization in model_names.keys()
41
+ }
42
+
43
+ qa_processor = TextQueryProcessor.from_pretrained("allenai/bart-large")
44
+ qa_model = QuestionAnswerer.from_pretrained("allenai/bart-large")
45
+
46
+ # Generation pipeline for creative text formats
47
+ generation_pipeline = pipeline("text-generation", model="gpt2", top_k=5)
48
+
49
+ # Interactive interface
50
+ interface = Interface(
51
+ fn=interact,
52
+ inputs=["text", "specialization"],
53
+ outputs=["text"],
54
+ title="AI Chatbot Civilization",
55
+ description="Interact with a generation of chatbots!",
56
+ )
57
+
58
+ def interact(text, specialization):
59
+ """Interact with a chatbot based on prompt and specialization."""
60
+ # Choose a chatbot from the current generation
61
+ chatbot = Chatbot(specialization)
62
+
63
+ # Process the prompt and identify relevant knowledge
64
+ processed_prompt = process_prompt(text, specialization)
65
+
66
+ # Generate response using specialization model
67
+ response = models[specialization].generate(
68
+ input_ids=tokenizers[specialization](
69
+ processed_prompt, return_tensors="pt"
70
+ ).input_ids
71
+ )
72
+
73
+ # Check for knowledge graph consultation request
74
+ if response.sequences[0].decode() == "Consult":
75
+ # Use QA model and knowledge graph to answer question
76
+ answer = qa_model(qa_processor(text, knowledge_graphs[specialization]))
77
+ return answer["answer"]
78
+
79
+ # Use generation pipeline for creative formats
80
+ if need_creative_format(text):
81
+ return generation_pipeline(text, max_length=50)
82
+
83
+ return response.sequences[0].decode()
84
+
85
+ def process_prompt(text, specialization):
86
+ """Preprocess prompt based on specialization and subfield."""
87
+ # Use subfield-specific data and techniques here
88
+ # Example: extract chemical equations for "Chemistry" prompts
89
+ return text
90
+
91
+ def need_creative_format(text):
92
+ """Check if prompt requires creative text generation."""
93
+ # Use keywords, patterns, or other techniques to identify
94
+ # Example: "Write a poem about..." or "Compose a melody like..."
95
+ return False
96
+
97
+ def learn(data, specialization):
98
+ """Update knowledge graph and fine-tune model based on data."""
99
+ # Use RDF and Hugging Face datasets/fine-tuning techniques
100
+ # Update knowledge_graphs and models dictionaries
101
+ pass
102
+
103
+ def mutate(chatbot):
104
+ """Create a new chatbot with potentially mutated specialization."""
105
+ # Implement logic for specialization mutation based on generation
106
+ # Update chatbot.specialization and potentially subfield
107
+ pass
108
+
109
+ # Generate the first generation
110
+ chatbots = [Chatbot(specialization) for specialization in SPECIALIZATIONS.keys()]
111
+
112
+ # Simulate generations with learning, interaction