Vinnybustacap commited on
Commit
5cb4761
·
1 Parent(s): 65d1167

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +112 -0
README.md CHANGED
@@ -1,3 +1,115 @@
1
  ---
2
  license: openrail
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: openrail
3
  ---
4
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
5
+ from rdflib import Graph
6
+ from datasets import load_dataset
7
+ from transformers import pipeline
8
+ from transformers import TextQueryProcessor, QuestionAnswerer
9
+ from gradio import Interface
10
+
11
+ # Define specializations and subfields
12
+ SPECIALIZATIONS = {
13
+ "Science": {"subfields": ["Physics", "Biology", "Chemistry"]},
14
+ "History": {"subfields": ["Ancient", "Medieval", "Modern"]},
15
+ "Art": {"subfields": ["Literature", "Visual", "Music"]},
16
+ }
17
+
18
+ # Define knowledge graph for each specialization
19
+ knowledge_graphs = {
20
+ specialization: Graph() for specialization in SPECIALIZATIONS.keys()
21
+ }
22
+
23
+ # Define Hugging Face models and pipelines
24
+ model_names = {
25
+ "Physics": "allenai/bart-large-cc2",
26
+ "Biology": "bert-base-uncased-finetuned-squad",
27
+ "Chemistry": "allenai/biobert-base",
28
+ "Ancient": "facebook/bart-base-uncased-cnn",
29
+ "Medieval": "distilbert-base-uncased-finetuned-squad",
30
+ "Modern": "allenai/longformer-base-4096",
31
+ "Literature": "gpt2-large",
32
+ "Visual": "autoencoder/bart-encoder",
33
+ "Music": "openai/music-gpt",
34
+ }
35
+
36
+ models = {
37
+ specialization: AutoModelForSeq2SeqLM.from_pretrained(model_names[specialization])
38
+ for specialization in model_names.keys()
39
+ }
40
+
41
+ tokenizers = {
42
+ specialization: AutoTokenizer.from_pretrained(model_names[specialization])
43
+ for specialization in model_names.keys()
44
+ }
45
+
46
+ qa_processor = TextQueryProcessor.from_pretrained("allenai/bart-large")
47
+ qa_model = QuestionAnswerer.from_pretrained("allenai/bart-large")
48
+
49
+ # Generation pipeline for creative text formats
50
+ generation_pipeline = pipeline("text-generation", model="gpt2", top_k=5)
51
+
52
+ # Interactive interface
53
+ interface = Interface(
54
+ fn=interact,
55
+ inputs=["text", "specialization"],
56
+ outputs=["text"],
57
+ title="AI Chatbot Civilization",
58
+ description="Interact with a generation of chatbots!",
59
+ )
60
+
61
+ def interact(text, specialization):
62
+ """Interact with a chatbot based on prompt and specialization."""
63
+ # Choose a chatbot from the current generation
64
+ chatbot = Chatbot(specialization)
65
+
66
+ # Process the prompt and identify relevant knowledge
67
+ processed_prompt = process_prompt(text, specialization)
68
+
69
+ # Generate response using specialization model
70
+ response = models[specialization].generate(
71
+ input_ids=tokenizers[specialization](
72
+ processed_prompt, return_tensors="pt"
73
+ ).input_ids
74
+ )
75
+
76
+ # Check for knowledge graph consultation request
77
+ if response.sequences[0].decode() == "Consult":
78
+ # Use QA model and knowledge graph to answer question
79
+ answer = qa_model(qa_processor(text, knowledge_graphs[specialization]))
80
+ return answer["answer"]
81
+
82
+ # Use generation pipeline for creative formats
83
+ if need_creative_format(text):
84
+ return generation_pipeline(text, max_length=50)
85
+
86
+ return response.sequences[0].decode()
87
+
88
+ def process_prompt(text, specialization):
89
+ """Preprocess prompt based on specialization and subfield."""
90
+ # Use subfield-specific data and techniques here
91
+ # Example: extract chemical equations for "Chemistry" prompts
92
+ return text
93
+
94
+ def need_creative_format(text):
95
+ """Check if prompt requires creative text generation."""
96
+ # Use keywords, patterns, or other techniques to identify
97
+ # Example: "Write a poem about..." or "Compose a melody like..."
98
+ return False
99
+
100
+ def learn(data, specialization):
101
+ """Update knowledge graph and fine-tune model based on data."""
102
+ # Use RDF and Hugging Face datasets/fine-tuning techniques
103
+ # Update knowledge_graphs and models dictionaries
104
+ pass
105
+
106
+ def mutate(chatbot):
107
+ """Create a new chatbot with potentially mutated specialization."""
108
+ # Implement logic for specialization mutation based on generation
109
+ # Update chatbot.specialization and potentially subfield
110
+ pass
111
+
112
+ # Generate the first generation
113
+ chatbots = [Chatbot(specialization) for specialization in SPECIALIZATIONS.keys()]
114
+
115
+ # Simulate generations with learning, interaction