VinMir commited on
Commit
519cb4c
·
1 Parent(s): 83c665d

Added files model factchecking

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ model.safetensors filter=lfs diff=lfs merge=lfs -text
37
+ *.json filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,78 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # GordonAI
2
+
3
+ GordonAI is an AI package designed for sentiment analysis, emotion detection, and fact-checking classification. The models are pre-trained on three languages: **Italian**, **English**, and **Spanish**.
4
+
5
+ ## Features
6
+
7
+ - **Sentiment Analysis**: Classifies text into three categories: **positive**, **negative**, and **neutral**.
8
+ - **Emotion Detection**: Identifies the six basic emotions defined by Paul Ekman (1992): **joy**, **sadness**, **fear**, **anger**, **surprise**, **disgust** (plus **neutral**).
9
+ - **Fact-Checking Classification**: Classifies text into **disinformation**, **hoax**, **fake news**, or **true news**.
10
+
11
+ ## Installation
12
+
13
+ You can install the package using `pip`. Simply run the following command:
14
+
15
+ ```bash
16
+ pip install GordonAI
17
+ ```
18
+
19
+ ## Usage
20
+
21
+ ### Sentiment Analysis
22
+
23
+ You can use the `SentimentAnalyzer` to predict the sentiment of a text. The analyzer classifies texts as positive, negative, or neutral.
24
+
25
+ ```python
26
+ from GordonAI.models import SentimentAnalyzer
27
+ # Initialize the sentiment analyzer
28
+ analyzer = SentimentAnalyzer()
29
+ # Predict sentiment of a list of texts
30
+ result = analyzer.predict(["This is a great product!", "This is a terrible mistake."])
31
+ # Output the predictions
32
+ print(result)
33
+ ```
34
+
35
+ ### Emotion Detection
36
+
37
+ You can use the `EmotionAnalyzer` to predict the emotion of a text. The analyzer classifies texts as joy, sadness, fear, anger, surprise, disgust or neutral.
38
+
39
+ ```python
40
+ from GordonAI.models import EmotionAnalyzer
41
+ # Initialize the emotion analyzer
42
+ emotion_analyzer = EmotionAnalyzer()
43
+ # Predict emotions of a list of texts
44
+ result = emotion_analyzer.predict(["I'm so happy today!", "I'm feeling really sad."])
45
+ # Output the predictions
46
+ print(result)
47
+ ```
48
+
49
+ ### Fact-Checking Classification
50
+ You can use the `FactAnalyzer` to predict whether a texts or a claim falls into categories like disinformation, fake news, hoax, or true news.
51
+
52
+ ```python
53
+ from GordonAI.models import FactAnalyzer
54
+ # Initialize the emotion analyzer
55
+ fact_analyzer = FactAnalyzer()
56
+ # Predict emotions of a list of texts
57
+ result = fact_analyzer.predict(["This news story is about a real event.", "This news article is based on fake information."])
58
+ # Output the predictions
59
+ print(result)
60
+ ```
61
+
62
+ ## Requirements
63
+ Python >= 3.9
64
+ transformers
65
+ torch
66
+
67
+ You can install the dependencies using:
68
+ ```bash
69
+ pip install transformers torch
70
+ ```
71
+
72
+ ## Acknowledgments
73
+
74
+ This package is part of the work for my doctoral thesis. I would like to thank **NeoData** and **Università di Catania** for their valuable contributions to the development of this project.
75
+
76
+
77
+
78
+
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb697283833d25e2c711f1bc37730ecd8b20f4bd5f015db1d84aefe0adc9155a
3
+ size 23
config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5b1457ef5d3cce5faafe383d9194278d3e5ea7e4f6d363a8ec32fb282838020
3
+ size 1085
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c2cde1dfbc623ccf8b55bed6dc778e046c4df69002e18837ea842f0ebb1aef2
3
+ size 1115274360
special_tokens_map.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9463f61e1b109a8eb4688b829260d7c6b1e6dff04c98ff7269bb89e2b92369b9
3
+ size 286
spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13c8d666d62a7bc4ac8f040aab68e942c861f93303156cc28f5c7e885d86d6e3
3
+ size 4305025
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e00b5fa387c7c7510aa60c51f1d92cfb2b32766c8422d0ade77aa07556e04176
3
+ size 16351029
tokenizer_config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8032d12bf0b260fc43a05ceb8e640f31847c5f97c9ef7c0229109a62458147c7
3
+ size 19675