File size: 28,465 Bytes
2910e6e aa36ad6 0d9a052 2910e6e 226bd66 aa36ad6 da20a00 aa36ad6 b4b3782 aa36ad6 d49856d aa36ad6 5a64fc5 aa36ad6 8d480a5 aa36ad6 226bd66 aa36ad6 226bd66 aa36ad6 85b4e36 aa36ad6 85b4e36 aa36ad6 85b4e36 aa36ad6 85b4e36 226bd66 85b4e36 aa36ad6 85b4e36 aa36ad6 85b4e36 aa36ad6 85b4e36 aa36ad6 85b4e36 aa36ad6 85b4e36 aa36ad6 85b4e36 aa36ad6 ae42366 aa36ad6 bb80064 1f29a66 aa36ad6 1f29a66 15a62e2 aa36ad6 ae42366 f1e92e2 ae42366 bb80064 ae42366 1f29a66 aa36ad6 ae42366 1f29a66 ae42366 aa36ad6 ae42366 1f29a66 aa36ad6 1f29a66 aa36ad6 ae42366 1f29a66 ae42366 aa36ad6 ae42366 1f29a66 aa36ad6 1f29a66 aa36ad6 ae42366 1f29a66 ae42366 aa36ad6 ae42366 1f29a66 aa36ad6 1f29a66 aa36ad6 ae42366 1f29a66 ae42366 aa36ad6 ae42366 1f29a66 aa36ad6 5a64fc5 aa36ad6 5a2ed21 aa36ad6 bb80064 aa36ad6 5a64fc5 aa36ad6 226bd66 aa36ad6 1f29a66 aa36ad6 fec238b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 |
---
library_name: transformers
license: apache-2.0
datasets:
- Vikhrmodels/tool-plannings-v0.1
language:
- en
base_model:
- Qwen/Qwen2.5-7B-Instruct
pipeline_tag: text-generation
tags:
- function-calling
- tools
- tool-calling
- tool-planning
---
# Vikhrmodels/Qwen2.5-7B-Instruct-Tool-Planning-v0.1
<!-- Provide a quick summary of what the model is/does. -->
This model is a experimental supervised fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) for the **Tool Planning**
task on synthetic data of the English [Vikhrmodels/tool-plannings-v0.1](https://huggingface.co/datasets/Vikhrmodels/tool-plannings-v0.1) dataset.
**Tool Planning** means modified version of **Function Calling** task with additional model's capabilities of reasoning about calls.
In this model, the features include:
* **Simple Function** — the model has <u>*one*</u> function in its arsenal, and it is able to call it if necessary at the user's common request.
* **Multiple Function** — the model has <u>*several*</u> functions in its arsenal, and it is able to call <u>*one of them*</u> if necessary at the user's request.
* **Parallel Multiple Function** — the model has <u>*several*</u> functions in its arsenal, and it is able to call <u>*some of them*</u> if necessary at the user's request.
* **Tool Planning** — firstly the model is <u>*thinking*</u> about user's intent of function calling and secondly does calling.
* **Tool Relevance Detection** — the model is able to determine the relevance of a function calling.
* **Tool Error Handling** — the model is able to react non-hallucinative to broken/erroneous tool executions.
All examples of these features are described below.
## Model card tree
* [Usage (HuggingFace Transformers)](#usage_hf)
* [Usage (VLLM)](#usage_vllm)
* [Tool Planning Examples](#examples)
* [Limitations](#lim)
* [Evaluation](#eval)
## Usage (HuggingFace Transformers) <a name="usage_hf"></a>
Below we share some code snippets on how to get quickly started with running the model. First, install the Transformers library with:
```bash
pip install transformers==4.48.3
```
### Prepare your functions
You should write the functions (tools) used by the model in *Python code* and make sure to add *Python docstrings* as in the example below:
```python
def get_weather(city: str):
"""
A function that returns the weather in a given city.
Args:
city: The city to get the weather for.
"""
import random
return "sunny" if random.random() > 0.5 else "rainy"
# Either immediately in JSON format:
get_sunrise_sunset_times = {
"type": "function",
"function": {
"name": "get_sunrise_sunset_times",
"description": "A function that returns the time of sunrise and sunset at the present moment, for a given city, in the form of a list: [sunrise_time, sunset_time].",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "The city to get the sunrise and sunset times for."
}
},
"required": ["city"]
}
}
}
tools = [get_weather, get_sunrise_sunset_times]
```
### Just use chat template
Next, you need to download the model and tokenizer:
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
"Vikhrmodels/Qwen2.5-7B-Instruct-Tool-Planning-v0.1",
device_map="auto",
torch_dtype=torch.bfloat16, # recommended dtype
)
tokenizer = AutoTokenizer.from_pretrained(
"Vikhrmodels/Qwen2.5-7B-Instruct-Tool-Planning-v0.1",
)
```
To get the result of generation, just use `apply_chat_template`. In order to take into account our written functions (tools),
we need to pass them as a list through the `tools` attribute and also use `add_prompt_generation=True`.
```python
history_messages = [
{"role": "user", "content": "Hi, can you tell me the time of sunrise in Los Angeles?"},
]
inputs = tokenizer.apply_chat_template(
history_messages,
tokenize=False,
add_generation_prompt=True, # adding prompt for generation
tools=tools, # our functions (tools)
)
input_tokens = tokenizer(
inputs,
add_special_tokens=False,
return_tensors='pt'
).to(model.device)
generated_ids = model.generate(
**input_tokens,
max_new_tokens=256,
do_sample=False,
)[0]
generated_response = tokenizer.decode(
generated_ids[input_tokens.input_ids.shape[-1]:],
skip_special_tokens=False, # `skip_special_tokens=False` for debug
)
print(generated_response)
```
Then our `generated_response` will look like this:
```
<|start_thinking|>The user wants to know the time of sunrise in Los Angeles. I will use the get_sunrise_sunset_times API to retrieve this information.<|end_thinking|><tool_call>[
{"tool_call_id": "0", "tool_name": "get_sunrise_sunset_times", "parameters": {"city": "Los Angeles"}}
]</tool_call><|im_end|>
```
## Usage (VLLM) <a name="usage_vllm"></a>
For corrected work online serving in VLLM you need additionally load [qwen2_tool_parser.py]() and [chat_template.jinja]() from this repository.
```
vllm serve Vikhrmodels/Qwen2.5-7B-Instruct-Tool-Planning-v0.1 \
--download-dir "/path/to/cache" \
--chat-template "/path/to/chat_template.jinja" \
--tool-parser-plugin "/path/to/qwen2_tool_parser.py" \
--tool-call-parser "qwen2" \
--enable-auto-tool-choice
```
After that you can start doing requests:
```python
from openai import OpenAI
import json
client = OpenAI(base_url="http://localhost:8000/v1", api_key="dummy")
tools = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string", "description": "City and state."},
},
"required": ["location"]
}
}
}
]
response = client.chat.completions.create(
model=client.models.list().data[0].id,
messages=[
{"role": "user", "content": "What's the weather in Krasnodar and Moscow?"}
],
tools=tools,
)
print(response.choices[0].message)
```
```
ChatCompletionMessage(
content='<|start_thinking|>I need to get the weather for Krasnodar and Moscow.<|end_thinking|>',
refusal=None,
role='assistant',
audio=None,
function_call=None,
tool_calls=[
ChatCompletionMessageToolCall(
id='chatcmpl-tool-73646c73148e4af9ac53656d6aa3e3c6',
function=Function(arguments='{"location": "Krasnodar"}', name='get_weather'),
type='function'),
ChatCompletionMessageToolCall(
id='chatcmpl-tool-95d93590d1a24df6a4f44a87a83f7761',
function=Function(arguments='{"location": "Moscow"}', name='get_weather'),
type='function')
],
reasoning_content=None)
```
## Tool Planning Examples <a name="examples"></a>
The model is using ***grounded system prompt*** for tool planning. <u>We do not recommend changing it too much, as this may cause hallucinations!</u>
But you can try to add first message as `system` role with additional system rules in your chat history and it adds at the end of this ***grounded system prompt***.
```
<|im_start|>system
You have been trained to have advanced reasoning and tool-use capabilities and you should make best use of these skills to serve user's requests.
# Tool Use
Think about how you can make best use of the provided tools to help with the task and come up with a high level plan that you will execute first.
0. Start by writing <|start_thinking|> followed by a detailed step by step plan of how you will solve the problem. For each step explain your thinking fully and give details of required tool calls (if needed). Unless specified otherwise, you write your plan in natural language. When you finish, close it out with <|end_thinking|>.
You can optionally choose to skip this step when the user request is so straightforward to address that only a trivial plan would be needed.
NOTE: You MUST skip this step when you are directly responding to the user's request without using any tools.
Then carry out your plan by repeatedly executing the following steps.
1. Action: write <tool_call> followed by a list of JSON-formatted tool calls, with each one containing "tool_name" and "parameters" fields.
When there are multiple tool calls which are completely independent of each other (i.e. they can be executed in parallel), you should list them out all together in one step. When you finish, close it out with </tool_call>.
2. Observation: you will then receive results of those tool calls in JSON format in the very next turn, wrapped around by <tool_response> and </tool_response>. Carefully observe those results and think about what to do next. Note that these results will be provided to you in a separate turn. NEVER hallucinate results.
Every tool call produces a list of results (when a tool call produces no result or a single result, it'll still get wrapped inside a list). Each result is clearly linked to its originating tool call via its "tool_call_id".
3. Reflection: start the next turn by writing <|start_thinking|> followed by what you've figured out so far, any changes you need to make to your plan, and what you will do next. When you finish, close it out with <|end_thinking|>.
You can optionally choose to skip this step when everything is going according to plan and no special pieces of information or reasoning chains need to be recorded.
NOTE: You MUST skip this step when you are done with tool-use actions and are ready to respond to the user.
You can repeat the above 3 steps multiple times (could be 0 times too if no suitable tool calls are available or needed), until you decide it's time to finally respond to the user.
4. Response: then break out of the loop and write <|start_response|> followed by a piece of text which serves as a response to the user's last request. Use all previous tool calls and results to help you when formulating your response. When you finish, close it out with <|end_response|>.
# Available Tools
Here is the list of tools that you have available to you.
You can ONLY use the tools listed here. When a tool is not listed below, it is NOT available and you should NEVER attempt to use it.
Each tool is represented as a JSON object with fields like "name", "description", "parameters" (per JSON Schema), and optionally, "responses" (per JSON Schema).
\`\`\`json
[
{"name": "get_weather", "description": "A function that returns the weather in a given city.", "parameters": {"type": "object", "properties": {"city": {"type": "string", "description": "The city to get the weather for."}}, "required": ["city"]}, "responses": null},
{"name": "get_sunrise_sunset_times", "description": "A function that returns the time of sunrise and sunset at the present moment, for a given city, in the form of a list: [sunrise_time, sunset_time].", "parameters": {"type": "object", "properties": {"city": {"type": "string", "description": "The city to get the sunrise and sunset times for."}}, "required": ["city"]}, "responses": null}
]
\`\`\`
<|im_end|>
```
*For corrected display used [\ \`] instead of [\`]*
**About the structure of prompt:**
- This model always will answer with new tokens: `<|start_response|>`...*text from model*...`<|end_response|>`. This content is the main one for user and it contains in `assistant` in `content` field.
- This model always starts <u>*thinking*</u> before tool calls with new tokens: `<|start_thinking|>`...*thinking*...`<|end_thinking|>`. It contains in `assistant` in `tool_plan` field.
- After <u>*thinking*</u> model starts generate tool calls (function calling) with Qwen2.5 tokens (it can be a multiple/parallel calling too):
```
<tool_call>[
{"tool_call_id": "...", "tool_name": "...", "parameters": {...}},
{"tool_call_id": "...", "tool_name": "...", "parameters": {...}},
...
]</tool_call><|im_end|>
```
`tool_call_id` is local tool id.<br>
`tool_name` is name of tool(function) calling.<br>
It contains in `assistant` in `tool_calls` field.<br>
- Responses from tools are located between `<tool_response>`...*all last locals tools*...`</tool_response>`. Every local tool contains separately in specific role `tool`:
```python
{
"role": "tool",
"tool_call_id": "0", # MUST BE matches with the corresponding call above.
"content": { "tool_name_1_returns": ... } # MUST BE dict with key "tool_name" + "_returns"
},
{
"role": "tool",
"tool_call_id": "1", # MUST BE matches with the corresponding call above.
"content": { "tool_name_1_returns": ... }
},
{
"role": "tool",
"tool_call_id": "2", # MUST BE matches with the corresponding call above.
"content": { "tool_name_2_returns": ... },
"is_error_tool": True # You can add it if your tool is corrupted. But then you must provide error description in content.
}
```
Local tool ids mean that ids must match only in one pair *tool call* and *tool response*, next *tool call* must reset the counter and start from 0 again.
### Simple Function
*history*
```python
messages = [
{"role": "user", "content": "Hey dude, what can you do?"},
{"role": "assistant", "content": "I can retrieve a list of unpaid invoices and process payments for specific invoices."},
{"role": "user", "content": "Okey, then retrieve a list for me"},
{
"role": "assistant",
"tool_plan": "I will retrieve a list of unpaid invoices.",
"tool_calls": [
{
"id": "0",
"type": "function",
"function": {
"name": "find_unpaid_invoices",
"arguments": {}
}
}
]
},
{
"role": "tool",
"tool_call_id": "0",
"content": { "find_unpaid_invoices_returns": ["Utility Debts", "Housing and Utilities Arrears"]}
},
{"role": "assistant", "content": "Here is the list of unpaid invoices: Utility Debts and Housing and Utilities Arrears."},
{"role": "user", "content": "Ooh, I forget about this! Lets pay Utility Debts in the amount of $100 please"},
{
"role": "assistant",
"tool_plan": "I will process the payment for the Utility Debts invoice.",
"tool_calls": [
{
"id": "0",
"type": "function",
"function": {
"name": "pay_invoice",
"arguments": {"invoice_id": "Utility Debts", "amount": 100}
}
}
]
},
{
"role": "tool",
"tool_call_id": "0",
"content": { "pay_invoice_returns": "Success"}
},
]
```
*prompt with generation*
```
<|im_start|>system
...grounded_system_prompt...
<|im_end|>
<|im_start|>user
Hey dude, what can you do?<|im_end|>
<|im_start|>assistant
<|start_response|>I can retrieve a list of unpaid invoices and process payments for specific invoices.<|end_response|><|im_end|>
<|im_start|>user
Okey, then retrieve a list for me<|im_end|>
<|im_start|>assistant
<|start_thinking|>I will retrieve a list of unpaid invoices.<|end_thinking|><tool_call>[
{"tool_call_id": "0", "tool_name": "find_unpaid_invoices", "parameters": {}}
]</tool_call><|im_end|>
<|im_start|>system
<tool_response>[
{
"tool_call_id": "0",
"results": {
"0": {"find_unpaid_invoices_returns": ["Utility Debts", "Housing and Utilities Arrears"]}
},
"is_error_tool": False
}
]</tool_response><|im_end|>
<|im_start|>assistant
<|start_response|>Here is the list of unpaid invoices: Utility Debts and Housing and Utilities Arrears.<|end_response|><|im_end|>
<|im_start|>user
Ooh, I forget about this! Lets pay Utility Debts in the amount of $100 please<|im_end|>
<|im_start|>assistant
<|start_thinking|>I will process the payment for the Utility Debts invoice.<|end_thinking|><tool_call>[
{"tool_call_id": "0", "tool_name": "pay_invoice", "parameters": {"invoice_id": "Utility Debts", "amount": 100}}
]</tool_call><|im_end|>
<|im_start|>system
<tool_response>[
{
"tool_call_id": "0",
"results": {
"0": {"pay_invoice_returns": "Success"}
},
"is_error_tool": False
}
]</tool_response><|im_end|>
<|im_start|>assistant
<|start_response|>The payment for the Utility Debts invoice has been processed successfully.<|end_response|><|im_end|>
```
### Multiple Function
*history*
```python
messages = [
{"role": "user", "content": "Hey dude, what can you do?"},
{"role": "assistant", "content": "I can provide weather information for a given city and also provide the sunrise and sunset times for a given city."},
{"role": "user", "content": "Thats great! Okey, can you provide weather in Krasnodar, Moscow and Krasnoyarsk for me please."},
{
"role": "assistant",
"tool_plan": "The user wants weather information for three cities: Krasnodar, Moscow, and Krasnoyarsk.",
"tool_calls": [
{
"id": "0",
"type": "function",
"function": {
"name": "get_weather",
"arguments": {
"city": "Krasnodar"
}
}
},
{
"id": "1",
"type": "function",
"function": {
"name": "get_weather",
"arguments": {
"city": "Moscow"
}
}
},
{
"id": "2",
"type": "function",
"function": {
"name": "get_weather",
"arguments": {
"city": "Krasnoyarsk"
}
}
},
]
},
{
"role": "tool",
"tool_call_id": "0",
"content": { "get_weather_returns": "sunny" }
},
{
"role": "tool",
"tool_call_id": "1",
"content": { "get_weather_returns": "sunny" }
},
{
"role": "tool",
"tool_call_id": "2",
"content": { "get_weather_returns": "rainy" }
},
]
```
*prompt with generation*
```
<|im_start|>system
...grounded_system_prompt...
<|im_end|>
<|im_start|>user
Hey dude, what can you do?<|im_end|>
<|im_start|>assistant
<|start_response|>I can provide weather information for a given city and also provide the sunrise and sunset times for a given city.<|end_response|><|im_end|>
<|im_start|>user
Thats great! Okey, can you provide weather in Krasnodar, Moscow and Krasnoyarsk for me please.<|im_end|>
<|im_start|>assistant
<|start_thinking|>The user wants weather information for three cities: Krasnodar, Moscow, and Krasnoyarsk.<|end_thinking|><tool_call>[
{"tool_call_id": "0", "tool_name": "get_weather", "parameters": {"city": "Krasnodar"}},
{"tool_call_id": "1", "tool_name": "get_weather", "parameters": {"city": "Moscow"}},
{"tool_call_id": "2", "tool_name": "get_weather", "parameters": {"city": "Krasnoyarsk"}}
]</tool_call><|im_end|>
<|im_start|>system
<tool_response>[
{
"tool_call_id": "0",
"results": {
"0": {"get_weather_returns": "sunny"}
},
"is_error_tool": False
},
{
"tool_call_id": "1",
"results": {
"0": {"get_weather_returns": "sunny"}
},
"is_error_tool": False
},
{
"tool_call_id": "2",
"results": {
"0": {"get_weather_returns": "rainy"}
},
"is_error_tool": False
}
]</tool_response><|im_end|>
<|im_start|>assistant
<|start_response|>The weather in Krasnodar is sunny, the weather in Moscow is sunny, and the weather in Krasnoyarsk is rainy.<|end_response|><|im_end|>
```
### Parallel Multiple Function
*history*
```python
messages = [
{"role": "user", "content": "Hey dude, what can you do?"},
{"role": "assistant", "content": "I can provide weather information for a given city and also provide the sunrise and sunset times for a given city."},
{"role": "user", "content": "Thats great! Okey, can you provide weather in Krasnodar, Moscow and only the sunrise time in Krasnoyarsk for me please."},
{
"role": "assistant",
"tool_plan": "The user has requested weather information for three cities and only the sunrise time for one city. I will first retrieve the weather information for Krasnodar and Moscow, and then retrieve the sunrise time for Krasnoyarsk.",
"tool_calls": [
{
"id": "0",
"type": "function",
"function": {
"name": "get_weather",
"arguments": {
"city": "Krasnodar"
}
}
},
{
"id": "1",
"type": "function",
"function": {
"name": "get_weather",
"arguments": {
"city": "Moscow"
}
}
},
{
"id": "2",
"type": "function",
"function": {
"name": "get_sunrise_sunset_times",
"arguments": {
"city": "Krasnoyarsk"
}
}
},
]
},
{
"role": "tool",
"tool_call_id": "0",
"content": { "get_weather_returns": "sunny" }
},
{
"role": "tool",
"tool_call_id": "1",
"content": { "get_weather_returns": "sunny" }
},
{
"role": "tool",
"tool_call_id": "2",
"content": { "get_sunrise_sunset_times_returns": ["6:00 AM", "6:00 PM"] }
},
]
```
*prompt with generation*
```
<|im_start|>system
...grounded_system_prompt...
<|im_end|>
<|im_start|>user
Hey dude, what can you do?<|im_end|>
<|im_start|>assistant
<|start_response|>I can provide weather information for a given city and also provide the sunrise and sunset times for a given city.<|end_response|><|im_end|>
<|im_start|>user
Thats great! Okey, can you provide weather in Krasnodar, Moscow and only the sunrise time in Krasnoyarsk for me please.<|im_end|>
<|im_start|>assistant
<|start_thinking|>The user has requested weather information for three cities and only the sunrise time for one city. I will first retrieve the weather information for Krasnodar and Moscow, and then retrieve the sunrise time for Krasnoyarsk.<|end_thinking|><tool_call>[
{"tool_call_id": "0", "tool_name": "get_weather", "parameters": {"city": "Krasnodar"}},
{"tool_call_id": "1", "tool_name": "get_weather", "parameters": {"city": "Moscow"}},
{"tool_call_id": "2", "tool_name": "get_sunrise_sunset_times", "parameters": {"city": "Krasnoyarsk"}}
]</tool_call><|im_end|>
<|im_start|>system
<tool_response>[
{
"tool_call_id": "0",
"results": {
"0": {"get_weather_returns": "sunny"}
},
"is_error_tool": False
},
{
"tool_call_id": "1",
"results": {
"0": {"get_weather_returns": "sunny"}
},
"is_error_tool": False
},
{
"tool_call_id": "2",
"results": {
"0": {"get_sunrise_sunset_times_returns": ["6:00 AM", "6:00 PM"]}
},
"is_error_tool": False
}
]</tool_response><|im_end|>
<|im_start|>assistant
<|start_response|>The weather in Krasnodar is sunny, the weather in Moscow is sunny, and the sunrise time in Krasnoyarsk is 6:00 AM.<|end_response|><|im_end|>
```
### Tool Error Handling
*history*
```python
messages = [
{"role": "user", "content": "Hey dude, what can you do?"},
{"role": "assistant", "content": "I can provide weather information for a given city and also provide the sunrise and sunset times for a given city."},
{"role": "user", "content": "Thats great! Okey, can you provide weather in Krasnodar, Moscow and only the sunrise time in Krasnoyarsk for me please."},
{
"role": "assistant",
"tool_plan": "The user has requested weather information for three cities and only the sunrise time for one city. I will first retrieve the weather information for Krasnodar and Moscow, and then retrieve the sunrise time for Krasnoyarsk.",
"tool_calls": [
{
"id": "0",
"type": "function",
"function": {
"name": "get_weather",
"arguments": {
"city": "Krasnodar"
}
}
},
{
"id": "1",
"type": "function",
"function": {
"name": "get_weather",
"arguments": {
"city": "Moscow"
}
}
},
{
"id": "2",
"type": "function",
"function": {
"name": "get_sunrise_sunset_times",
"arguments": {
"city": "Krasnoyarsk"
}
}
},
]
},
{
"role": "tool",
"tool_call_id": "0",
"content": { "get_weather_returns": "sunny" }
},
{
"role": "tool",
"tool_call_id": "1",
"content": { "get_weather_returns": "sunny" }
},
{
"role": "tool",
"tool_call_id": "2",
"content": { "get_sunrise_sunset_times_returns": {"error": True, "message": "Server is unavailable now"} },
"is_error_tool": True
},
]
```
*prompt with generation*
```
<|im_start|>system
...grounded_system_prompt...
<|im_end|>
<|im_start|>user
Hey dude, what can you do?<|im_end|>
<|im_start|>assistant
<|start_response|>I can provide weather information for a given city and also provide the sunrise and sunset times for a given city.<|end_response|><|im_end|>
<|im_start|>user
Thats great! Okey, can you provide weather in Krasnodar, Moscow and only the sunrise time in Krasnoyarsk for me please.<|im_end|>
<|im_start|>assistant
<|start_thinking|>The user has requested weather information for three cities and only the sunrise time for one city. I will first retrieve the weather information for Krasnodar and Moscow, and then retrieve the sunrise time for Krasnoyarsk.<|end_thinking|><tool_call>[
{"tool_call_id": "0", "tool_name": "get_weather", "parameters": {"city": "Krasnodar"}},
{"tool_call_id": "1", "tool_name": "get_weather", "parameters": {"city": "Moscow"}},
{"tool_call_id": "2", "tool_name": "get_sunrise_sunset_times", "parameters": {"city": "Krasnoyarsk"}}
]</tool_call><|im_end|>
<|im_start|>system
<tool_response>[
{
"tool_call_id": "0",
"results": {
"0": {"get_weather_returns": "sunny"}
},
"is_error_tool": False
},
{
"tool_call_id": "1",
"results": {
"0": {"get_weather_returns": "sunny"}
},
"is_error_tool": False
},
{
"tool_call_id": "2",
"results": {
"0": {"get_sunrise_sunset_times_returns": {"error": true, "message": "Server is unavailable now"}}
},
"is_error_tool": True
}
]</tool_response><|im_end|>
<|im_start|>assistant
<|start_response|>The weather in Krasnodar and Moscow is sunny. Unfortunately, the server is currently unavailable, so I cannot provide the sunrise time for Krasnoyarsk.<|end_response|><|im_end|>
```
## Limitations <a name="lim"></a>
This is the experimental checkpoint and some hallucinations are possible. If you find something interesting in model behavior, please create [issue and lets discuss it!](https://huggingface.co/Vikhrmodels/Qwen2.5-7B-Instruct-Tool-Planning/discussions)
* The model the most stability works in `greedy search` or low `temperature(about < 0.5)`
* The model can feel some problems with long user plan. It confuses the trajectory of calls and changes the order in which related tasks are performed. In fact, this is not a mistake, but a violation of the user's requirement.
* The model can solve very easy tasks on the fly, right in the process of calls (for example, basic arithmetic).
## Evaluation <a name="eval"></a>
| Task | Acc(%) |
|---------------------------|----------|
| Simple | 73.25 |
| Multiple | 93.00 |
| Parallel | 90.00 |
| Parallel Multiple | 81.00 |
| Relevance Detection | 64.71 |
| Irrelevance Detection | 85.72 |
## Authors
- [Dmitry Tishencko](https://huggingface.co/DiTy), [Vikhr Team](https://t.me/vikhrlabs) |