# Controlling image quality The components of a diffusion model, like the UNet and scheduler, can be optimized to improve the quality of generated images leading to better image lighting and details. These techniques are especially useful if you don't have the resources to simply use a larger model for inference. You can enable these techniques during inference without any additional training. This guide will show you how to turn these techniques on in your pipeline and how to configure them to improve the quality of your generated images. ## Lighting The Stable Diffusion models aren't very good at generating images that are very bright or dark because the scheduler doesn't start sampling from the last timestep and it doesn't enforce a zero signal-to-noise ratio (SNR). The [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://hf.co/papers/2305.08891) paper fixes these issues which are now available in some Diffusers schedulers. > [!TIP] > For inference, you need a model that has been trained with *v_prediction*. To train your own model with *v_prediction*, add the following flag to the [train_text_to_image.py](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py) or [train_text_to_image_lora.py](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image_lora.py) scripts. > > ```bash > --prediction_type="v_prediction" > ``` For example, load the [ptx0/pseudo-journey-v2](https://hf.co/ptx0/pseudo-journey-v2) checkpoint which was trained with `v_prediction` and the [`DDIMScheduler`]. Now you should configure the following parameters in the [`DDIMScheduler`]. * `rescale_betas_zero_snr=True` to rescale the noise schedule to zero SNR * `timestep_spacing="trailing"` to start sampling from the last timestep Set `guidance_rescale` in the pipeline to prevent over-exposure. A lower value increases brightness but some of the details may appear washed out. ```py from diffusers import DiffusionPipeline, DDIMScheduler pipeline = DiffusionPipeline.from_pretrained("ptx0/pseudo-journey-v2", use_safetensors=True) pipeline.scheduler = DDIMScheduler.from_config( pipeline.scheduler.config, rescale_betas_zero_snr=True, timestep_spacing="trailing" ) pipeline.to("cuda") prompt = "cinematic photo of a snowy mountain at night with the northern lights aurora borealis overhead, 35mm photograph, film, professional, 4k, highly detailed" generator = torch.Generator(device="cpu").manual_seed(23) image = pipeline(prompt, guidance_rescale=0.7, generator=generator).images[0] image ```
default Stable Diffusion v2-1 image
image with zero SNR and trailing timestep spacing enabled
## Details [FreeU](https://hf.co/papers/2309.11497) improves image details by rebalancing the UNet's backbone and skip connection weights. The skip connections can cause the model to overlook some of the backbone semantics which may lead to unnatural image details in the generated image. This technique does not require any additional training and can be applied on the fly during inference for tasks like image-to-image and text-to-video. Use the [`~pipelines.StableDiffusionMixin.enable_freeu`] method on your pipeline and configure the scaling factors for the backbone (`b1` and `b2`) and skip connections (`s1` and `s2`). The number after each scaling factor corresponds to the stage in the UNet where the factor is applied. Take a look at the [FreeU](https://github.com/ChenyangSi/FreeU#parameters) repository for reference hyperparameters for different models. ```py import torch from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, safety_checker=None ).to("cuda") pipeline.enable_freeu(s1=0.9, s2=0.2, b1=1.5, b2=1.6) generator = torch.Generator(device="cpu").manual_seed(33) prompt = "" image = pipeline(prompt, generator=generator).images[0] image ```
FreeU disabled
FreeU enabled
```py import torch from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16, safety_checker=None ).to("cuda") pipeline.enable_freeu(s1=0.9, s2=0.2, b1=1.4, b2=1.6) generator = torch.Generator(device="cpu").manual_seed(80) prompt = "A squirrel eating a burger" image = pipeline(prompt, generator=generator).images[0] image ```
FreeU disabled
FreeU enabled
```py import torch from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, ).to("cuda") pipeline.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4) generator = torch.Generator(device="cpu").manual_seed(13) prompt = "A squirrel eating a burger" image = pipeline(prompt, generator=generator).images[0] image ```
FreeU disabled
FreeU enabled
```py import torch from diffusers import DiffusionPipeline from diffusers.utils import export_to_video pipeline = DiffusionPipeline.from_pretrained( "damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16 ).to("cuda") # values come from https://github.com/lyn-rgb/FreeU_Diffusers#video-pipelines pipeline.enable_freeu(b1=1.2, b2=1.4, s1=0.9, s2=0.2) prompt = "Confident teddy bear surfer rides the wave in the tropics" generator = torch.Generator(device="cpu").manual_seed(47) video_frames = pipeline(prompt, generator=generator).frames[0] export_to_video(video_frames, "teddy_bear.mp4", fps=10) ```
FreeU disabled
FreeU enabled
Call the [`pipelines.StableDiffusionMixin.disable_freeu`] method to disable FreeU. ```py pipeline.disable_freeu() ```