# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DPMSolverMultistepScheduler, LEditsPPPipelineStableDiffusion, UNet2DConditionModel, ) from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, require_torch_gpu, skip_mps, slow, torch_device, ) enable_full_determinism() @skip_mps class LEditsPPPipelineStableDiffusionFastTests(unittest.TestCase): pipeline_class = LEditsPPPipelineStableDiffusion def get_dummy_components(self): torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=(32, 64, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) scheduler = DPMSolverMultistepScheduler(algorithm_type="sde-dpmsolver++", solver_order=2) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "generator": generator, "editing_prompt": ["wearing glasses", "sunshine"], "reverse_editing_direction": [False, True], "edit_guidance_scale": [10.0, 5.0], } return inputs def get_dummy_inversion_inputs(self, device, seed=0): images = floats_tensor((2, 3, 32, 32), rng=random.Random(0)).cpu().permute(0, 2, 3, 1) images = 255 * images image_1 = Image.fromarray(np.uint8(images[0])).convert("RGB") image_2 = Image.fromarray(np.uint8(images[1])).convert("RGB") if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "image": [image_1, image_2], "source_prompt": "", "source_guidance_scale": 3.5, "num_inversion_steps": 20, "skip": 0.15, "generator": generator, } return inputs def test_ledits_pp_inversion(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = LEditsPPPipelineStableDiffusion(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inversion_inputs(device) inputs["image"] = inputs["image"][0] sd_pipe.invert(**inputs) assert sd_pipe.init_latents.shape == ( 1, 4, int(32 / sd_pipe.vae_scale_factor), int(32 / sd_pipe.vae_scale_factor), ) latent_slice = sd_pipe.init_latents[0, -1, -3:, -3:].to(device) print(latent_slice.flatten()) expected_slice = np.array([-0.9084, -0.0367, 0.2940, 0.0839, 0.6890, 0.2651, -0.7104, 2.1090, -0.7822]) assert np.abs(latent_slice.flatten() - expected_slice).max() < 1e-3 def test_ledits_pp_inversion_batch(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() sd_pipe = LEditsPPPipelineStableDiffusion(**components) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inversion_inputs(device) sd_pipe.invert(**inputs) assert sd_pipe.init_latents.shape == ( 2, 4, int(32 / sd_pipe.vae_scale_factor), int(32 / sd_pipe.vae_scale_factor), ) latent_slice = sd_pipe.init_latents[0, -1, -3:, -3:].to(device) print(latent_slice.flatten()) expected_slice = np.array([0.2528, 0.1458, -0.2166, 0.4565, -0.5657, -1.0286, -0.9961, 0.5933, 1.1173]) assert np.abs(latent_slice.flatten() - expected_slice).max() < 1e-3 latent_slice = sd_pipe.init_latents[1, -1, -3:, -3:].to(device) print(latent_slice.flatten()) expected_slice = np.array([-0.0796, 2.0583, 0.5501, 0.5358, 0.0282, -0.2803, -1.0470, 0.7023, -0.0072]) assert np.abs(latent_slice.flatten() - expected_slice).max() < 1e-3 def test_ledits_pp_warmup_steps(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() pipe = LEditsPPPipelineStableDiffusion(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inversion_inputs = self.get_dummy_inversion_inputs(device) pipe.invert(**inversion_inputs) inputs = self.get_dummy_inputs(device) inputs["edit_warmup_steps"] = [0, 5] pipe(**inputs).images inputs["edit_warmup_steps"] = [5, 0] pipe(**inputs).images inputs["edit_warmup_steps"] = [5, 10] pipe(**inputs).images inputs["edit_warmup_steps"] = [10, 5] pipe(**inputs).images @slow @require_torch_gpu class LEditsPPPipelineStableDiffusionSlowTests(unittest.TestCase): def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def setUpClass(cls): raw_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat_6.png" ) raw_image = raw_image.convert("RGB").resize((512, 512)) cls.raw_image = raw_image def test_ledits_pp_editing(self): pipe = LEditsPPPipelineStableDiffusion.from_pretrained( "runwayml/stable-diffusion-v1-5", safety_checker=None, torch_dtype=torch.float16 ) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) _ = pipe.invert(image=self.raw_image, generator=generator) generator = torch.manual_seed(0) inputs = { "generator": generator, "editing_prompt": ["cat", "dog"], "reverse_editing_direction": [True, False], "edit_guidance_scale": [5.0, 5.0], "edit_threshold": [0.8, 0.8], } reconstruction = pipe(**inputs, output_type="np").images[0] output_slice = reconstruction[150:153, 140:143, -1] output_slice = output_slice.flatten() expected_slice = np.array( [0.9453125, 0.93310547, 0.84521484, 0.94628906, 0.9111328, 0.80859375, 0.93847656, 0.9042969, 0.8144531] ) assert np.abs(output_slice - expected_slice).max() < 1e-2