This project is an attempt to check if it's possible to apply to [ORPO](https://arxiv.org/abs/2403.07691) on a text-conditioned diffusion model to align it on preference data WITHOUT a reference model. The implementation is based on https://github.com/huggingface/trl/pull/1435/. > [!WARNING] > We assume that MSE in the diffusion formulation approximates the log-probs as required by ORPO (hat-tip to [@kashif](https://github.com/kashif) for the idea). So, please consider this to be extremely experimental. ## Training Here's training command you can use on a 40GB A100 to validate things on a [small preference dataset](https://hf.co/datasets/kashif/pickascore): ```bash accelerate launch train_diffusion_orpo_sdxl_lora.py \ --pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0 \ --pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix \ --output_dir="diffusion-sdxl-orpo" \ --mixed_precision="fp16" \ --dataset_name=kashif/pickascore \ --train_batch_size=8 \ --gradient_accumulation_steps=2 \ --gradient_checkpointing \ --use_8bit_adam \ --rank=8 \ --learning_rate=1e-5 \ --report_to="wandb" \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --max_train_steps=2000 \ --checkpointing_steps=500 \ --run_validation --validation_steps=50 \ --seed="0" \ --report_to="wandb" \ --push_to_hub ``` We also provide a simple script to scale up the training on the [yuvalkirstain/pickapic_v2](https://huggingface.co/datasets/yuvalkirstain/pickapic_v2) dataset: ```bash accelerate launch --multi_gpu train_diffusion_orpo_sdxl_lora_wds.py \ --pretrained_model_name_or_path=stabilityai/stable-diffusion-xl-base-1.0 \ --pretrained_vae_model_name_or_path=madebyollin/sdxl-vae-fp16-fix \ --dataset_path="pipe:aws s3 cp s3://diffusion-preference-opt/{00000..00644}.tar -" \ --output_dir="diffusion-sdxl-orpo-wds" \ --mixed_precision="fp16" \ --gradient_accumulation_steps=1 \ --gradient_checkpointing \ --use_8bit_adam \ --rank=8 \ --dataloader_num_workers=8 \ --learning_rate=3e-5 \ --report_to="wandb" \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --max_train_steps=50000 \ --checkpointing_steps=2000 \ --run_validation --validation_steps=500 \ --seed="0" \ --report_to="wandb" \ --push_to_hub ``` We tested the above on a node of 8 H100s but it should also work on A100s. It requires the `webdataset` library for faster dataloading. Note that we kept the dataset shards on an S3 bucket but it should be also possible to have them stored locally. You can use the code below to convert the original dataset into `webdataset` shards: ```python import os import io import ray import webdataset as wds from datasets import Dataset from PIL import Image ray.init(num_cpus=8) def convert_to_image(im_bytes): return Image.open(io.BytesIO(im_bytes)).convert("RGB") def main(): dataset_path = "/pickapic_v2/data" wds_shards_path = "/pickapic_v2_webdataset" # get all .parquet files in the dataset path dataset_files = [ os.path.join(dataset_path, f) for f in os.listdir(dataset_path) if f.endswith(".parquet") ] @ray.remote def create_shard(path): # get basename of the file basename = os.path.basename(path) # get the shard number data-00123-of-01034.parquet -> 00123 shard_num = basename.split("-")[1] dataset = Dataset.from_parquet(path) # create a webdataset shard shard = wds.TarWriter(os.path.join(wds_shards_path, f"{shard_num}.tar")) for i, example in enumerate(dataset): wds_example = { "__key__": str(i), "original_prompt.txt": example["caption"], "jpg_0.jpg": convert_to_image(example["jpg_0"]), "jpg_1.jpg": convert_to_image(example["jpg_1"]), "label_0.txt": str(example["label_0"]), "label_1.txt": str(example["label_1"]) } shard.write(wds_example) shard.close() futures = [create_shard.remote(path) for path in dataset_files] ray.get(futures) if __name__ == "__main__": main() ``` ## Inference Refer to [sayakpaul/diffusion-sdxl-orpo](https://huggingface.co/sayakpaul/diffusion-sdxl-orpo) for an experimental checkpoint.