|
import gc |
|
import random |
|
import traceback |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from PIL import Image |
|
from transformers import ( |
|
CLIPImageProcessor, |
|
CLIPTextModel, |
|
CLIPTokenizer, |
|
CLIPVisionModelWithProjection, |
|
GPT2Tokenizer, |
|
) |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DPMSolverMultistepScheduler, |
|
UniDiffuserModel, |
|
UniDiffuserPipeline, |
|
UniDiffuserTextDecoder, |
|
) |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
load_image, |
|
nightly, |
|
require_torch_2, |
|
require_torch_gpu, |
|
run_test_in_subprocess, |
|
torch_device, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
from ..pipeline_params import ( |
|
IMAGE_TO_IMAGE_IMAGE_PARAMS, |
|
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, |
|
TEXT_GUIDED_IMAGE_VARIATION_PARAMS, |
|
) |
|
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
|
|
def _test_unidiffuser_compile(in_queue, out_queue, timeout): |
|
error = None |
|
try: |
|
inputs = in_queue.get(timeout=timeout) |
|
torch_device = inputs.pop("torch_device") |
|
seed = inputs.pop("seed") |
|
inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed) |
|
|
|
pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1") |
|
|
|
pipe = pipe.to(torch_device) |
|
|
|
pipe.unet.to(memory_format=torch.channels_last) |
|
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) |
|
|
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
image = pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.2402, 0.2375, 0.2285, 0.2378, 0.2407, 0.2263, 0.2354, 0.2307, 0.2520]) |
|
assert np.abs(image_slice - expected_slice).max() < 1e-1 |
|
except Exception: |
|
error = f"{traceback.format_exc()}" |
|
|
|
results = {"error": error} |
|
out_queue.put(results, timeout=timeout) |
|
out_queue.join() |
|
|
|
|
|
class UniDiffuserPipelineFastTests( |
|
PipelineTesterMixin, PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase |
|
): |
|
pipeline_class = UniDiffuserPipeline |
|
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS |
|
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS |
|
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS |
|
|
|
image_latents_params = frozenset(["vae_latents"]) |
|
|
|
def get_dummy_components(self): |
|
unet = UniDiffuserModel.from_pretrained( |
|
"hf-internal-testing/unidiffuser-diffusers-test", |
|
subfolder="unet", |
|
) |
|
|
|
scheduler = DPMSolverMultistepScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
solver_order=3, |
|
) |
|
|
|
vae = AutoencoderKL.from_pretrained( |
|
"hf-internal-testing/unidiffuser-diffusers-test", |
|
subfolder="vae", |
|
) |
|
|
|
text_encoder = CLIPTextModel.from_pretrained( |
|
"hf-internal-testing/unidiffuser-diffusers-test", |
|
subfolder="text_encoder", |
|
) |
|
clip_tokenizer = CLIPTokenizer.from_pretrained( |
|
"hf-internal-testing/unidiffuser-diffusers-test", |
|
subfolder="clip_tokenizer", |
|
) |
|
|
|
image_encoder = CLIPVisionModelWithProjection.from_pretrained( |
|
"hf-internal-testing/unidiffuser-diffusers-test", |
|
subfolder="image_encoder", |
|
) |
|
|
|
clip_image_processor = CLIPImageProcessor(crop_size=32, size=32) |
|
|
|
|
|
text_tokenizer = GPT2Tokenizer.from_pretrained( |
|
"hf-internal-testing/unidiffuser-diffusers-test", |
|
subfolder="text_tokenizer", |
|
) |
|
text_decoder = UniDiffuserTextDecoder.from_pretrained( |
|
"hf-internal-testing/unidiffuser-diffusers-test", |
|
subfolder="text_decoder", |
|
) |
|
|
|
components = { |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"image_encoder": image_encoder, |
|
"clip_image_processor": clip_image_processor, |
|
"clip_tokenizer": clip_tokenizer, |
|
"text_decoder": text_decoder, |
|
"text_tokenizer": text_tokenizer, |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
} |
|
|
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) |
|
image = image.cpu().permute(0, 2, 3, 1)[0] |
|
image = Image.fromarray(np.uint8(image)).convert("RGB") |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "an elephant under the sea", |
|
"image": image, |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def get_fixed_latents(self, device, seed=0): |
|
if isinstance(device, str): |
|
device = torch.device(device) |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
prompt_latents = randn_tensor((1, 77, 32), generator=generator, device=device, dtype=torch.float32) |
|
vae_latents = randn_tensor((1, 4, 16, 16), generator=generator, device=device, dtype=torch.float32) |
|
clip_latents = randn_tensor((1, 1, 32), generator=generator, device=device, dtype=torch.float32) |
|
|
|
latents = { |
|
"prompt_latents": prompt_latents, |
|
"vae_latents": vae_latents, |
|
"clip_latents": clip_latents, |
|
} |
|
return latents |
|
|
|
def get_dummy_inputs_with_latents(self, device, seed=0): |
|
|
|
|
|
|
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unidiffuser/unidiffuser_example_image.jpg", |
|
) |
|
image = image.resize((32, 32)) |
|
latents = self.get_fixed_latents(device, seed=seed) |
|
|
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
inputs = { |
|
"prompt": "an elephant under the sea", |
|
"image": image, |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "np", |
|
"prompt_latents": latents.get("prompt_latents"), |
|
"vae_latents": latents.get("vae_latents"), |
|
"clip_latents": latents.get("clip_latents"), |
|
} |
|
return inputs |
|
|
|
def test_dict_tuple_outputs_equivalent(self): |
|
expected_slice = None |
|
if torch_device == "cpu": |
|
expected_slice = np.array([0.7489, 0.3722, 0.4475, 0.5630, 0.5923, 0.4992, 0.3936, 0.5844, 0.4975]) |
|
super().test_dict_tuple_outputs_equivalent(expected_slice=expected_slice) |
|
|
|
def test_unidiffuser_default_joint_v0(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
unidiffuser_pipe = UniDiffuserPipeline(**components) |
|
unidiffuser_pipe = unidiffuser_pipe.to(device) |
|
unidiffuser_pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
unidiffuser_pipe.set_joint_mode() |
|
assert unidiffuser_pipe.mode == "joint" |
|
|
|
|
|
inputs = self.get_dummy_inputs_with_latents(device) |
|
|
|
del inputs["prompt"] |
|
del inputs["image"] |
|
sample = unidiffuser_pipe(**inputs) |
|
image = sample.images |
|
text = sample.text |
|
assert image.shape == (1, 32, 32, 3) |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_img_slice = np.array([0.5760, 0.6270, 0.6571, 0.4965, 0.4638, 0.5663, 0.5254, 0.5068, 0.5716]) |
|
assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-3 |
|
|
|
expected_text_prefix = " no no no " |
|
assert text[0][:10] == expected_text_prefix |
|
|
|
def test_unidiffuser_default_joint_no_cfg_v0(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
unidiffuser_pipe = UniDiffuserPipeline(**components) |
|
unidiffuser_pipe = unidiffuser_pipe.to(device) |
|
unidiffuser_pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
unidiffuser_pipe.set_joint_mode() |
|
assert unidiffuser_pipe.mode == "joint" |
|
|
|
|
|
inputs = self.get_dummy_inputs_with_latents(device) |
|
|
|
del inputs["prompt"] |
|
del inputs["image"] |
|
|
|
inputs["guidance_scale"] = 1.0 |
|
sample = unidiffuser_pipe(**inputs) |
|
image = sample.images |
|
text = sample.text |
|
assert image.shape == (1, 32, 32, 3) |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_img_slice = np.array([0.5760, 0.6270, 0.6571, 0.4965, 0.4638, 0.5663, 0.5254, 0.5068, 0.5716]) |
|
assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-3 |
|
|
|
expected_text_prefix = " no no no " |
|
assert text[0][:10] == expected_text_prefix |
|
|
|
def test_unidiffuser_default_text2img_v0(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
unidiffuser_pipe = UniDiffuserPipeline(**components) |
|
unidiffuser_pipe = unidiffuser_pipe.to(device) |
|
unidiffuser_pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
unidiffuser_pipe.set_text_to_image_mode() |
|
assert unidiffuser_pipe.mode == "text2img" |
|
|
|
inputs = self.get_dummy_inputs_with_latents(device) |
|
|
|
del inputs["image"] |
|
image = unidiffuser_pipe(**inputs).images |
|
assert image.shape == (1, 32, 32, 3) |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_slice = np.array([0.5758, 0.6269, 0.6570, 0.4967, 0.4639, 0.5664, 0.5257, 0.5067, 0.5715]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_unidiffuser_default_image_0(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
unidiffuser_pipe = UniDiffuserPipeline(**components) |
|
unidiffuser_pipe = unidiffuser_pipe.to(device) |
|
unidiffuser_pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
unidiffuser_pipe.set_image_mode() |
|
assert unidiffuser_pipe.mode == "img" |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
|
|
del inputs["prompt"] |
|
del inputs["image"] |
|
image = unidiffuser_pipe(**inputs).images |
|
assert image.shape == (1, 32, 32, 3) |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_slice = np.array([0.5760, 0.6270, 0.6571, 0.4966, 0.4638, 0.5663, 0.5254, 0.5068, 0.5715]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_unidiffuser_default_text_v0(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
unidiffuser_pipe = UniDiffuserPipeline(**components) |
|
unidiffuser_pipe = unidiffuser_pipe.to(device) |
|
unidiffuser_pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
unidiffuser_pipe.set_text_mode() |
|
assert unidiffuser_pipe.mode == "text" |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
|
|
del inputs["prompt"] |
|
del inputs["image"] |
|
text = unidiffuser_pipe(**inputs).text |
|
|
|
expected_text_prefix = " no no no " |
|
assert text[0][:10] == expected_text_prefix |
|
|
|
def test_unidiffuser_default_img2text_v0(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
unidiffuser_pipe = UniDiffuserPipeline(**components) |
|
unidiffuser_pipe = unidiffuser_pipe.to(device) |
|
unidiffuser_pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
unidiffuser_pipe.set_image_to_text_mode() |
|
assert unidiffuser_pipe.mode == "img2text" |
|
|
|
inputs = self.get_dummy_inputs_with_latents(device) |
|
|
|
del inputs["prompt"] |
|
text = unidiffuser_pipe(**inputs).text |
|
|
|
expected_text_prefix = " no no no " |
|
assert text[0][:10] == expected_text_prefix |
|
|
|
def test_unidiffuser_default_joint_v1(self): |
|
device = "cpu" |
|
unidiffuser_pipe = UniDiffuserPipeline.from_pretrained("hf-internal-testing/unidiffuser-test-v1") |
|
unidiffuser_pipe = unidiffuser_pipe.to(device) |
|
unidiffuser_pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
unidiffuser_pipe.set_joint_mode() |
|
assert unidiffuser_pipe.mode == "joint" |
|
|
|
|
|
inputs = self.get_dummy_inputs_with_latents(device) |
|
|
|
del inputs["prompt"] |
|
del inputs["image"] |
|
inputs["data_type"] = 1 |
|
sample = unidiffuser_pipe(**inputs) |
|
image = sample.images |
|
text = sample.text |
|
assert image.shape == (1, 32, 32, 3) |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_img_slice = np.array([0.5760, 0.6270, 0.6571, 0.4965, 0.4638, 0.5663, 0.5254, 0.5068, 0.5716]) |
|
assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-3 |
|
|
|
expected_text_prefix = " no no no " |
|
assert text[0][:10] == expected_text_prefix |
|
|
|
def test_unidiffuser_default_text2img_v1(self): |
|
device = "cpu" |
|
unidiffuser_pipe = UniDiffuserPipeline.from_pretrained("hf-internal-testing/unidiffuser-test-v1") |
|
unidiffuser_pipe = unidiffuser_pipe.to(device) |
|
unidiffuser_pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
unidiffuser_pipe.set_text_to_image_mode() |
|
assert unidiffuser_pipe.mode == "text2img" |
|
|
|
inputs = self.get_dummy_inputs_with_latents(device) |
|
|
|
del inputs["image"] |
|
image = unidiffuser_pipe(**inputs).images |
|
assert image.shape == (1, 32, 32, 3) |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_slice = np.array([0.5758, 0.6269, 0.6570, 0.4967, 0.4639, 0.5664, 0.5257, 0.5067, 0.5715]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
def test_unidiffuser_default_img2text_v1(self): |
|
device = "cpu" |
|
unidiffuser_pipe = UniDiffuserPipeline.from_pretrained("hf-internal-testing/unidiffuser-test-v1") |
|
unidiffuser_pipe = unidiffuser_pipe.to(device) |
|
unidiffuser_pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
unidiffuser_pipe.set_image_to_text_mode() |
|
assert unidiffuser_pipe.mode == "img2text" |
|
|
|
inputs = self.get_dummy_inputs_with_latents(device) |
|
|
|
del inputs["prompt"] |
|
text = unidiffuser_pipe(**inputs).text |
|
|
|
expected_text_prefix = " no no no " |
|
assert text[0][:10] == expected_text_prefix |
|
|
|
def test_unidiffuser_text2img_multiple_images(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
unidiffuser_pipe = UniDiffuserPipeline(**components) |
|
unidiffuser_pipe = unidiffuser_pipe.to(device) |
|
unidiffuser_pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
unidiffuser_pipe.set_text_to_image_mode() |
|
assert unidiffuser_pipe.mode == "text2img" |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
|
|
del inputs["image"] |
|
inputs["num_images_per_prompt"] = 2 |
|
inputs["num_prompts_per_image"] = 3 |
|
image = unidiffuser_pipe(**inputs).images |
|
assert image.shape == (2, 32, 32, 3) |
|
|
|
def test_unidiffuser_img2text_multiple_prompts(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
unidiffuser_pipe = UniDiffuserPipeline(**components) |
|
unidiffuser_pipe = unidiffuser_pipe.to(device) |
|
unidiffuser_pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
unidiffuser_pipe.set_image_to_text_mode() |
|
assert unidiffuser_pipe.mode == "img2text" |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
|
|
del inputs["prompt"] |
|
inputs["num_images_per_prompt"] = 2 |
|
inputs["num_prompts_per_image"] = 3 |
|
text = unidiffuser_pipe(**inputs).text |
|
|
|
assert len(text) == 3 |
|
|
|
def test_unidiffuser_text2img_multiple_images_with_latents(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
unidiffuser_pipe = UniDiffuserPipeline(**components) |
|
unidiffuser_pipe = unidiffuser_pipe.to(device) |
|
unidiffuser_pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
unidiffuser_pipe.set_text_to_image_mode() |
|
assert unidiffuser_pipe.mode == "text2img" |
|
|
|
inputs = self.get_dummy_inputs_with_latents(device) |
|
|
|
del inputs["image"] |
|
inputs["num_images_per_prompt"] = 2 |
|
inputs["num_prompts_per_image"] = 3 |
|
image = unidiffuser_pipe(**inputs).images |
|
assert image.shape == (2, 32, 32, 3) |
|
|
|
def test_unidiffuser_img2text_multiple_prompts_with_latents(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
unidiffuser_pipe = UniDiffuserPipeline(**components) |
|
unidiffuser_pipe = unidiffuser_pipe.to(device) |
|
unidiffuser_pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
unidiffuser_pipe.set_image_to_text_mode() |
|
assert unidiffuser_pipe.mode == "img2text" |
|
|
|
inputs = self.get_dummy_inputs_with_latents(device) |
|
|
|
del inputs["prompt"] |
|
inputs["num_images_per_prompt"] = 2 |
|
inputs["num_prompts_per_image"] = 3 |
|
text = unidiffuser_pipe(**inputs).text |
|
|
|
assert len(text) == 3 |
|
|
|
def test_inference_batch_single_identical(self): |
|
super().test_inference_batch_single_identical(expected_max_diff=2e-4) |
|
|
|
@require_torch_gpu |
|
def test_unidiffuser_default_joint_v1_cuda_fp16(self): |
|
device = "cuda" |
|
unidiffuser_pipe = UniDiffuserPipeline.from_pretrained( |
|
"hf-internal-testing/unidiffuser-test-v1", torch_dtype=torch.float16 |
|
) |
|
unidiffuser_pipe = unidiffuser_pipe.to(device) |
|
unidiffuser_pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
unidiffuser_pipe.set_joint_mode() |
|
assert unidiffuser_pipe.mode == "joint" |
|
|
|
inputs = self.get_dummy_inputs_with_latents(device) |
|
|
|
del inputs["prompt"] |
|
del inputs["image"] |
|
inputs["data_type"] = 1 |
|
sample = unidiffuser_pipe(**inputs) |
|
image = sample.images |
|
text = sample.text |
|
assert image.shape == (1, 32, 32, 3) |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_img_slice = np.array([0.5049, 0.5498, 0.5854, 0.3052, 0.4460, 0.6489, 0.5122, 0.4810, 0.6138]) |
|
assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-3 |
|
|
|
expected_text_prefix = '" This This' |
|
assert text[0][: len(expected_text_prefix)] == expected_text_prefix |
|
|
|
@require_torch_gpu |
|
def test_unidiffuser_default_text2img_v1_cuda_fp16(self): |
|
device = "cuda" |
|
unidiffuser_pipe = UniDiffuserPipeline.from_pretrained( |
|
"hf-internal-testing/unidiffuser-test-v1", torch_dtype=torch.float16 |
|
) |
|
unidiffuser_pipe = unidiffuser_pipe.to(device) |
|
unidiffuser_pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
unidiffuser_pipe.set_text_to_image_mode() |
|
assert unidiffuser_pipe.mode == "text2img" |
|
|
|
inputs = self.get_dummy_inputs_with_latents(device) |
|
|
|
del inputs["image"] |
|
inputs["data_type"] = 1 |
|
sample = unidiffuser_pipe(**inputs) |
|
image = sample.images |
|
assert image.shape == (1, 32, 32, 3) |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_img_slice = np.array([0.5054, 0.5498, 0.5854, 0.3052, 0.4458, 0.6489, 0.5122, 0.4810, 0.6138]) |
|
assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-3 |
|
|
|
@require_torch_gpu |
|
def test_unidiffuser_default_img2text_v1_cuda_fp16(self): |
|
device = "cuda" |
|
unidiffuser_pipe = UniDiffuserPipeline.from_pretrained( |
|
"hf-internal-testing/unidiffuser-test-v1", torch_dtype=torch.float16 |
|
) |
|
unidiffuser_pipe = unidiffuser_pipe.to(device) |
|
unidiffuser_pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
unidiffuser_pipe.set_image_to_text_mode() |
|
assert unidiffuser_pipe.mode == "img2text" |
|
|
|
inputs = self.get_dummy_inputs_with_latents(device) |
|
|
|
del inputs["prompt"] |
|
inputs["data_type"] = 1 |
|
text = unidiffuser_pipe(**inputs).text |
|
|
|
expected_text_prefix = '" This This' |
|
assert text[0][: len(expected_text_prefix)] == expected_text_prefix |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class UniDiffuserPipelineSlowTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, seed=0, generate_latents=False): |
|
generator = torch.manual_seed(seed) |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unidiffuser/unidiffuser_example_image.jpg" |
|
) |
|
inputs = { |
|
"prompt": "an elephant under the sea", |
|
"image": image, |
|
"generator": generator, |
|
"num_inference_steps": 3, |
|
"guidance_scale": 8.0, |
|
"output_type": "np", |
|
} |
|
if generate_latents: |
|
latents = self.get_fixed_latents(device, seed=seed) |
|
for latent_name, latent_tensor in latents.items(): |
|
inputs[latent_name] = latent_tensor |
|
return inputs |
|
|
|
def get_fixed_latents(self, device, seed=0): |
|
if isinstance(device, str): |
|
device = torch.device(device) |
|
latent_device = torch.device("cpu") |
|
generator = torch.Generator(device=latent_device).manual_seed(seed) |
|
|
|
prompt_latents = randn_tensor((1, 77, 768), generator=generator, device=device, dtype=torch.float32) |
|
vae_latents = randn_tensor((1, 4, 64, 64), generator=generator, device=device, dtype=torch.float32) |
|
clip_latents = randn_tensor((1, 1, 512), generator=generator, device=device, dtype=torch.float32) |
|
|
|
|
|
prompt_latents = prompt_latents.to(device) |
|
vae_latents = vae_latents.to(device) |
|
clip_latents = clip_latents.to(device) |
|
|
|
latents = { |
|
"prompt_latents": prompt_latents, |
|
"vae_latents": vae_latents, |
|
"clip_latents": clip_latents, |
|
} |
|
return latents |
|
|
|
def test_unidiffuser_default_joint_v1(self): |
|
pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1") |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
|
|
inputs = self.get_inputs(device=torch_device, generate_latents=True) |
|
|
|
del inputs["prompt"] |
|
del inputs["image"] |
|
sample = pipe(**inputs) |
|
image = sample.images |
|
text = sample.text |
|
assert image.shape == (1, 512, 512, 3) |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_img_slice = np.array([0.2402, 0.2375, 0.2285, 0.2378, 0.2407, 0.2263, 0.2354, 0.2307, 0.2520]) |
|
assert np.abs(image_slice.flatten() - expected_img_slice).max() < 1e-1 |
|
|
|
expected_text_prefix = "a living room" |
|
assert text[0][: len(expected_text_prefix)] == expected_text_prefix |
|
|
|
def test_unidiffuser_default_text2img_v1(self): |
|
pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1") |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(device=torch_device, generate_latents=True) |
|
del inputs["image"] |
|
sample = pipe(**inputs) |
|
image = sample.images |
|
assert image.shape == (1, 512, 512, 3) |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_slice = np.array([0.0242, 0.0103, 0.0022, 0.0129, 0.0000, 0.0090, 0.0376, 0.0508, 0.0005]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 |
|
|
|
def test_unidiffuser_default_img2text_v1(self): |
|
pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1") |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(device=torch_device, generate_latents=True) |
|
del inputs["prompt"] |
|
sample = pipe(**inputs) |
|
text = sample.text |
|
|
|
expected_text_prefix = "An astronaut" |
|
assert text[0][: len(expected_text_prefix)] == expected_text_prefix |
|
|
|
@unittest.skip(reason="Skip torch.compile test to speed up the slow test suite.") |
|
@require_torch_2 |
|
def test_unidiffuser_compile(self, seed=0): |
|
inputs = self.get_inputs(torch_device, seed=seed, generate_latents=True) |
|
|
|
del inputs["prompt"] |
|
del inputs["image"] |
|
|
|
del inputs["generator"] |
|
inputs["torch_device"] = torch_device |
|
inputs["seed"] = seed |
|
run_test_in_subprocess(test_case=self, target_func=_test_unidiffuser_compile, inputs=inputs) |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class UniDiffuserPipelineNightlyTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def get_inputs(self, device, seed=0, generate_latents=False): |
|
generator = torch.manual_seed(seed) |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unidiffuser/unidiffuser_example_image.jpg" |
|
) |
|
inputs = { |
|
"prompt": "an elephant under the sea", |
|
"image": image, |
|
"generator": generator, |
|
"num_inference_steps": 3, |
|
"guidance_scale": 8.0, |
|
"output_type": "np", |
|
} |
|
if generate_latents: |
|
latents = self.get_fixed_latents(device, seed=seed) |
|
for latent_name, latent_tensor in latents.items(): |
|
inputs[latent_name] = latent_tensor |
|
return inputs |
|
|
|
def get_fixed_latents(self, device, seed=0): |
|
if isinstance(device, str): |
|
device = torch.device(device) |
|
latent_device = torch.device("cpu") |
|
generator = torch.Generator(device=latent_device).manual_seed(seed) |
|
|
|
prompt_latents = randn_tensor((1, 77, 768), generator=generator, device=device, dtype=torch.float32) |
|
vae_latents = randn_tensor((1, 4, 64, 64), generator=generator, device=device, dtype=torch.float32) |
|
clip_latents = randn_tensor((1, 1, 512), generator=generator, device=device, dtype=torch.float32) |
|
|
|
|
|
prompt_latents = prompt_latents.to(device) |
|
vae_latents = vae_latents.to(device) |
|
clip_latents = clip_latents.to(device) |
|
|
|
latents = { |
|
"prompt_latents": prompt_latents, |
|
"vae_latents": vae_latents, |
|
"clip_latents": clip_latents, |
|
} |
|
return latents |
|
|
|
def test_unidiffuser_default_joint_v1_fp16(self): |
|
pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1", torch_dtype=torch.float16) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
|
|
inputs = self.get_inputs(device=torch_device, generate_latents=True) |
|
|
|
del inputs["prompt"] |
|
del inputs["image"] |
|
sample = pipe(**inputs) |
|
image = sample.images |
|
text = sample.text |
|
assert image.shape == (1, 512, 512, 3) |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_img_slice = np.array([0.2402, 0.2375, 0.2285, 0.2378, 0.2407, 0.2263, 0.2354, 0.2307, 0.2520]) |
|
assert np.abs(image_slice.flatten() - expected_img_slice).max() < 2e-1 |
|
|
|
expected_text_prefix = "a living room" |
|
assert text[0][: len(expected_text_prefix)] == expected_text_prefix |
|
|
|
def test_unidiffuser_default_text2img_v1_fp16(self): |
|
pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1", torch_dtype=torch.float16) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(device=torch_device, generate_latents=True) |
|
del inputs["image"] |
|
sample = pipe(**inputs) |
|
image = sample.images |
|
assert image.shape == (1, 512, 512, 3) |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
expected_slice = np.array([0.0242, 0.0103, 0.0022, 0.0129, 0.0000, 0.0090, 0.0376, 0.0508, 0.0005]) |
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 |
|
|
|
def test_unidiffuser_default_img2text_v1_fp16(self): |
|
pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1", torch_dtype=torch.float16) |
|
pipe.to(torch_device) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
|
|
inputs = self.get_inputs(device=torch_device, generate_latents=True) |
|
del inputs["prompt"] |
|
sample = pipe(**inputs) |
|
text = sample.text |
|
|
|
expected_text_prefix = "An astronaut" |
|
assert text[0][: len(expected_text_prefix)] == expected_text_prefix |
|
|