dreambooth-dog-1
/
diffusers
/tests
/pipelines
/stable_diffusion_2
/test_stable_diffusion_inpaint.py
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import random | |
import unittest | |
import numpy as np | |
import torch | |
from PIL import Image | |
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNet2DConditionModel | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
floats_tensor, | |
load_image, | |
load_numpy, | |
require_torch_gpu, | |
slow, | |
torch_device, | |
) | |
from ..pipeline_params import ( | |
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, | |
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, | |
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, | |
) | |
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin | |
enable_full_determinism() | |
class StableDiffusion2InpaintPipelineFastTests( | |
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase | |
): | |
pipeline_class = StableDiffusionInpaintPipeline | |
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS | |
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS | |
image_params = frozenset( | |
[] | |
) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess | |
image_latents_params = frozenset([]) | |
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"mask", "masked_image_latents"}) | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=9, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
cross_attention_dim=32, | |
# SD2-specific config below | |
attention_head_dim=(2, 4), | |
use_linear_projection=True, | |
) | |
scheduler = PNDMScheduler(skip_prk_steps=True) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
sample_size=128, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
# SD2-specific config below | |
hidden_act="gelu", | |
projection_dim=512, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"safety_checker": None, | |
"feature_extractor": None, | |
"image_encoder": None, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched | |
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) | |
image = image.cpu().permute(0, 2, 3, 1)[0] | |
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) | |
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((64, 64)) | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"image": init_image, | |
"mask_image": mask_image, | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 6.0, | |
"output_type": "np", | |
} | |
return inputs | |
def test_stable_diffusion_inpaint(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionInpaintPipeline(**components) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = sd_pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_inference_batch_single_identical(self): | |
super().test_inference_batch_single_identical(expected_max_diff=3e-3) | |
class StableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase): | |
def setUp(self): | |
# clean up the VRAM before each test | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
# clean up the VRAM after each test | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_stable_diffusion_inpaint_pipeline(self): | |
init_image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
"/sd2-inpaint/init_image.png" | |
) | |
mask_image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" | |
) | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" | |
"/yellow_cat_sitting_on_a_park_bench.npy" | |
) | |
model_id = "stabilityai/stable-diffusion-2-inpainting" | |
pipe = StableDiffusionInpaintPipeline.from_pretrained(model_id, safety_checker=None) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
prompt = "Face of a yellow cat, high resolution, sitting on a park bench" | |
generator = torch.manual_seed(0) | |
output = pipe( | |
prompt=prompt, | |
image=init_image, | |
mask_image=mask_image, | |
generator=generator, | |
output_type="np", | |
) | |
image = output.images[0] | |
assert image.shape == (512, 512, 3) | |
assert np.abs(expected_image - image).max() < 9e-3 | |
def test_stable_diffusion_inpaint_pipeline_fp16(self): | |
init_image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
"/sd2-inpaint/init_image.png" | |
) | |
mask_image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" | |
) | |
expected_image = load_numpy( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" | |
"/yellow_cat_sitting_on_a_park_bench_fp16.npy" | |
) | |
model_id = "stabilityai/stable-diffusion-2-inpainting" | |
pipe = StableDiffusionInpaintPipeline.from_pretrained( | |
model_id, | |
torch_dtype=torch.float16, | |
safety_checker=None, | |
) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing() | |
prompt = "Face of a yellow cat, high resolution, sitting on a park bench" | |
generator = torch.manual_seed(0) | |
output = pipe( | |
prompt=prompt, | |
image=init_image, | |
mask_image=mask_image, | |
generator=generator, | |
output_type="np", | |
) | |
image = output.images[0] | |
assert image.shape == (512, 512, 3) | |
assert np.abs(expected_image - image).max() < 5e-1 | |
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self): | |
torch.cuda.empty_cache() | |
torch.cuda.reset_max_memory_allocated() | |
torch.cuda.reset_peak_memory_stats() | |
init_image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
"/sd2-inpaint/init_image.png" | |
) | |
mask_image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" | |
) | |
model_id = "stabilityai/stable-diffusion-2-inpainting" | |
pndm = PNDMScheduler.from_pretrained(model_id, subfolder="scheduler") | |
pipe = StableDiffusionInpaintPipeline.from_pretrained( | |
model_id, | |
safety_checker=None, | |
scheduler=pndm, | |
torch_dtype=torch.float16, | |
) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe.enable_attention_slicing(1) | |
pipe.enable_sequential_cpu_offload() | |
prompt = "Face of a yellow cat, high resolution, sitting on a park bench" | |
generator = torch.manual_seed(0) | |
_ = pipe( | |
prompt=prompt, | |
image=init_image, | |
mask_image=mask_image, | |
generator=generator, | |
num_inference_steps=2, | |
output_type="np", | |
) | |
mem_bytes = torch.cuda.max_memory_allocated() | |
# make sure that less than 2.65 GB is allocated | |
assert mem_bytes < 2.65 * 10**9 | |