dreambooth-dog-1 / diffusers /tests /models /test_modeling_common.py
Upamanyu098's picture
End of training
ef4d689 verified
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import tempfile
import traceback
import unittest
import unittest.mock as mock
import uuid
from typing import Dict, List, Tuple
import numpy as np
import requests_mock
import torch
from accelerate.utils import compute_module_sizes
from huggingface_hub import ModelCard, delete_repo
from huggingface_hub.utils import is_jinja_available
from requests.exceptions import HTTPError
from diffusers.models import UNet2DConditionModel
from diffusers.models.attention_processor import (
AttnProcessor,
AttnProcessor2_0,
AttnProcessorNPU,
XFormersAttnProcessor,
)
from diffusers.training_utils import EMAModel
from diffusers.utils import is_torch_npu_available, is_xformers_available, logging
from diffusers.utils.testing_utils import (
CaptureLogger,
get_python_version,
require_python39_or_higher,
require_torch_2,
require_torch_accelerator_with_training,
require_torch_gpu,
require_torch_multi_gpu,
run_test_in_subprocess,
torch_device,
)
from ..others.test_utils import TOKEN, USER, is_staging_test
# Will be run via run_test_in_subprocess
def _test_from_save_pretrained_dynamo(in_queue, out_queue, timeout):
error = None
try:
init_dict, model_class = in_queue.get(timeout=timeout)
model = model_class(**init_dict)
model.to(torch_device)
model = torch.compile(model)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname, safe_serialization=False)
new_model = model_class.from_pretrained(tmpdirname)
new_model.to(torch_device)
assert new_model.__class__ == model_class
except Exception:
error = f"{traceback.format_exc()}"
results = {"error": error}
out_queue.put(results, timeout=timeout)
out_queue.join()
class ModelUtilsTest(unittest.TestCase):
def tearDown(self):
super().tearDown()
def test_accelerate_loading_error_message(self):
with self.assertRaises(ValueError) as error_context:
UNet2DConditionModel.from_pretrained("hf-internal-testing/stable-diffusion-broken", subfolder="unet")
# make sure that error message states what keys are missing
assert "conv_out.bias" in str(error_context.exception)
def test_cached_files_are_used_when_no_internet(self):
# A mock response for an HTTP head request to emulate server down
response_mock = mock.Mock()
response_mock.status_code = 500
response_mock.headers = {}
response_mock.raise_for_status.side_effect = HTTPError
response_mock.json.return_value = {}
# Download this model to make sure it's in the cache.
orig_model = UNet2DConditionModel.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet"
)
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.request", return_value=response_mock):
# Download this model to make sure it's in the cache.
model = UNet2DConditionModel.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="unet", local_files_only=True
)
for p1, p2 in zip(orig_model.parameters(), model.parameters()):
if p1.data.ne(p2.data).sum() > 0:
assert False, "Parameters not the same!"
def test_one_request_upon_cached(self):
# TODO: For some reason this test fails on MPS where no HEAD call is made.
if torch_device == "mps":
return
use_safetensors = False
with tempfile.TemporaryDirectory() as tmpdirname:
with requests_mock.mock(real_http=True) as m:
UNet2DConditionModel.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch",
subfolder="unet",
cache_dir=tmpdirname,
use_safetensors=use_safetensors,
)
download_requests = [r.method for r in m.request_history]
assert download_requests.count("HEAD") == 2, "2 HEAD requests one for config, one for model"
assert download_requests.count("GET") == 2, "2 GET requests one for config, one for model"
with requests_mock.mock(real_http=True) as m:
UNet2DConditionModel.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch",
subfolder="unet",
cache_dir=tmpdirname,
use_safetensors=use_safetensors,
)
cache_requests = [r.method for r in m.request_history]
assert (
"HEAD" == cache_requests[0] and len(cache_requests) == 1
), "We should call only `model_info` to check for _commit hash and `send_telemetry`"
def test_weight_overwrite(self):
with tempfile.TemporaryDirectory() as tmpdirname, self.assertRaises(ValueError) as error_context:
UNet2DConditionModel.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch",
subfolder="unet",
cache_dir=tmpdirname,
in_channels=9,
)
# make sure that error message states what keys are missing
assert "Cannot load" in str(error_context.exception)
with tempfile.TemporaryDirectory() as tmpdirname:
model = UNet2DConditionModel.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch",
subfolder="unet",
cache_dir=tmpdirname,
in_channels=9,
low_cpu_mem_usage=False,
ignore_mismatched_sizes=True,
)
assert model.config.in_channels == 9
class UNetTesterMixin:
def test_forward_signature(self):
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["sample", "timestep"]
self.assertListEqual(arg_names[:2], expected_arg_names)
def test_forward_with_norm_groups(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
init_dict["norm_num_groups"] = 16
init_dict["block_out_channels"] = (16, 32)
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.to_tuple()[0]
self.assertIsNotNone(output)
expected_shape = inputs_dict["sample"].shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
class ModelTesterMixin:
main_input_name = None # overwrite in model specific tester class
base_precision = 1e-3
forward_requires_fresh_args = False
model_split_percents = [0.5, 0.7, 0.9]
def check_device_map_is_respected(self, model, device_map):
for param_name, param in model.named_parameters():
# Find device in device_map
while len(param_name) > 0 and param_name not in device_map:
param_name = ".".join(param_name.split(".")[:-1])
if param_name not in device_map:
raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")
param_device = device_map[param_name]
if param_device in ["cpu", "disk"]:
self.assertEqual(param.device, torch.device("meta"))
else:
self.assertEqual(param.device, torch.device(param_device))
def test_from_save_pretrained(self, expected_max_diff=5e-5):
if self.forward_requires_fresh_args:
model = self.model_class(**self.init_dict)
else:
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
if hasattr(model, "set_default_attn_processor"):
model.set_default_attn_processor()
model.to(torch_device)
model.eval()
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname, safe_serialization=False)
new_model = self.model_class.from_pretrained(tmpdirname)
if hasattr(new_model, "set_default_attn_processor"):
new_model.set_default_attn_processor()
new_model.to(torch_device)
with torch.no_grad():
if self.forward_requires_fresh_args:
image = model(**self.inputs_dict(0))
else:
image = model(**inputs_dict)
if isinstance(image, dict):
image = image.to_tuple()[0]
if self.forward_requires_fresh_args:
new_image = new_model(**self.inputs_dict(0))
else:
new_image = new_model(**inputs_dict)
if isinstance(new_image, dict):
new_image = new_image.to_tuple()[0]
max_diff = (image - new_image).abs().max().item()
self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes")
def test_getattr_is_correct(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
# save some things to test
model.dummy_attribute = 5
model.register_to_config(test_attribute=5)
logger = logging.get_logger("diffusers.models.modeling_utils")
# 30 for warning
logger.setLevel(30)
with CaptureLogger(logger) as cap_logger:
assert hasattr(model, "dummy_attribute")
assert getattr(model, "dummy_attribute") == 5
assert model.dummy_attribute == 5
# no warning should be thrown
assert cap_logger.out == ""
logger = logging.get_logger("diffusers.models.modeling_utils")
# 30 for warning
logger.setLevel(30)
with CaptureLogger(logger) as cap_logger:
assert hasattr(model, "save_pretrained")
fn = model.save_pretrained
fn_1 = getattr(model, "save_pretrained")
assert fn == fn_1
# no warning should be thrown
assert cap_logger.out == ""
# warning should be thrown
with self.assertWarns(FutureWarning):
assert model.test_attribute == 5
with self.assertWarns(FutureWarning):
assert getattr(model, "test_attribute") == 5
with self.assertRaises(AttributeError) as error:
model.does_not_exist
assert str(error.exception) == f"'{type(model).__name__}' object has no attribute 'does_not_exist'"
@unittest.skipIf(
torch_device != "npu" or not is_torch_npu_available(),
reason="torch npu flash attention is only available with NPU and `torch_npu` installed",
)
def test_set_torch_npu_flash_attn_processor_determinism(self):
torch.use_deterministic_algorithms(False)
if self.forward_requires_fresh_args:
model = self.model_class(**self.init_dict)
else:
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
if not hasattr(model, "set_attn_processor"):
# If not has `set_attn_processor`, skip test
return
model.set_default_attn_processor()
assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
with torch.no_grad():
if self.forward_requires_fresh_args:
output = model(**self.inputs_dict(0))[0]
else:
output = model(**inputs_dict)[0]
model.enable_npu_flash_attention()
assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
with torch.no_grad():
if self.forward_requires_fresh_args:
output_2 = model(**self.inputs_dict(0))[0]
else:
output_2 = model(**inputs_dict)[0]
model.set_attn_processor(AttnProcessorNPU())
assert all(type(proc) == AttnProcessorNPU for proc in model.attn_processors.values())
with torch.no_grad():
if self.forward_requires_fresh_args:
output_3 = model(**self.inputs_dict(0))[0]
else:
output_3 = model(**inputs_dict)[0]
torch.use_deterministic_algorithms(True)
assert torch.allclose(output, output_2, atol=self.base_precision)
assert torch.allclose(output, output_3, atol=self.base_precision)
assert torch.allclose(output_2, output_3, atol=self.base_precision)
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_set_xformers_attn_processor_for_determinism(self):
torch.use_deterministic_algorithms(False)
if self.forward_requires_fresh_args:
model = self.model_class(**self.init_dict)
else:
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
if not hasattr(model, "set_attn_processor"):
# If not has `set_attn_processor`, skip test
return
model.set_default_attn_processor()
assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
with torch.no_grad():
if self.forward_requires_fresh_args:
output = model(**self.inputs_dict(0))[0]
else:
output = model(**inputs_dict)[0]
model.enable_xformers_memory_efficient_attention()
assert all(type(proc) == XFormersAttnProcessor for proc in model.attn_processors.values())
with torch.no_grad():
if self.forward_requires_fresh_args:
output_2 = model(**self.inputs_dict(0))[0]
else:
output_2 = model(**inputs_dict)[0]
model.set_attn_processor(XFormersAttnProcessor())
assert all(type(proc) == XFormersAttnProcessor for proc in model.attn_processors.values())
with torch.no_grad():
if self.forward_requires_fresh_args:
output_3 = model(**self.inputs_dict(0))[0]
else:
output_3 = model(**inputs_dict)[0]
torch.use_deterministic_algorithms(True)
assert torch.allclose(output, output_2, atol=self.base_precision)
assert torch.allclose(output, output_3, atol=self.base_precision)
assert torch.allclose(output_2, output_3, atol=self.base_precision)
@require_torch_gpu
def test_set_attn_processor_for_determinism(self):
torch.use_deterministic_algorithms(False)
if self.forward_requires_fresh_args:
model = self.model_class(**self.init_dict)
else:
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
if not hasattr(model, "set_attn_processor"):
# If not has `set_attn_processor`, skip test
return
assert all(type(proc) == AttnProcessor2_0 for proc in model.attn_processors.values())
with torch.no_grad():
if self.forward_requires_fresh_args:
output_1 = model(**self.inputs_dict(0))[0]
else:
output_1 = model(**inputs_dict)[0]
model.set_default_attn_processor()
assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
with torch.no_grad():
if self.forward_requires_fresh_args:
output_2 = model(**self.inputs_dict(0))[0]
else:
output_2 = model(**inputs_dict)[0]
model.set_attn_processor(AttnProcessor2_0())
assert all(type(proc) == AttnProcessor2_0 for proc in model.attn_processors.values())
with torch.no_grad():
if self.forward_requires_fresh_args:
output_4 = model(**self.inputs_dict(0))[0]
else:
output_4 = model(**inputs_dict)[0]
model.set_attn_processor(AttnProcessor())
assert all(type(proc) == AttnProcessor for proc in model.attn_processors.values())
with torch.no_grad():
if self.forward_requires_fresh_args:
output_5 = model(**self.inputs_dict(0))[0]
else:
output_5 = model(**inputs_dict)[0]
torch.use_deterministic_algorithms(True)
# make sure that outputs match
assert torch.allclose(output_2, output_1, atol=self.base_precision)
assert torch.allclose(output_2, output_4, atol=self.base_precision)
assert torch.allclose(output_2, output_5, atol=self.base_precision)
def test_from_save_pretrained_variant(self, expected_max_diff=5e-5):
if self.forward_requires_fresh_args:
model = self.model_class(**self.init_dict)
else:
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
if hasattr(model, "set_default_attn_processor"):
model.set_default_attn_processor()
model.to(torch_device)
model.eval()
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname, variant="fp16", safe_serialization=False)
new_model = self.model_class.from_pretrained(tmpdirname, variant="fp16")
if hasattr(new_model, "set_default_attn_processor"):
new_model.set_default_attn_processor()
# non-variant cannot be loaded
with self.assertRaises(OSError) as error_context:
self.model_class.from_pretrained(tmpdirname)
# make sure that error message states what keys are missing
assert "Error no file named diffusion_pytorch_model.bin found in directory" in str(error_context.exception)
new_model.to(torch_device)
with torch.no_grad():
if self.forward_requires_fresh_args:
image = model(**self.inputs_dict(0))
else:
image = model(**inputs_dict)
if isinstance(image, dict):
image = image.to_tuple()[0]
if self.forward_requires_fresh_args:
new_image = new_model(**self.inputs_dict(0))
else:
new_image = new_model(**inputs_dict)
if isinstance(new_image, dict):
new_image = new_image.to_tuple()[0]
max_diff = (image - new_image).abs().max().item()
self.assertLessEqual(max_diff, expected_max_diff, "Models give different forward passes")
@require_python39_or_higher
@require_torch_2
@unittest.skipIf(
get_python_version == (3, 12),
reason="Torch Dynamo isn't yet supported for Python 3.12.",
)
def test_from_save_pretrained_dynamo(self):
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
inputs = [init_dict, self.model_class]
run_test_in_subprocess(test_case=self, target_func=_test_from_save_pretrained_dynamo, inputs=inputs)
def test_from_save_pretrained_dtype(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
for dtype in [torch.float32, torch.float16, torch.bfloat16]:
if torch_device == "mps" and dtype == torch.bfloat16:
continue
with tempfile.TemporaryDirectory() as tmpdirname:
model.to(dtype)
model.save_pretrained(tmpdirname, safe_serialization=False)
new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=True, torch_dtype=dtype)
assert new_model.dtype == dtype
new_model = self.model_class.from_pretrained(tmpdirname, low_cpu_mem_usage=False, torch_dtype=dtype)
assert new_model.dtype == dtype
def test_determinism(self, expected_max_diff=1e-5):
if self.forward_requires_fresh_args:
model = self.model_class(**self.init_dict)
else:
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
if self.forward_requires_fresh_args:
first = model(**self.inputs_dict(0))
else:
first = model(**inputs_dict)
if isinstance(first, dict):
first = first.to_tuple()[0]
if self.forward_requires_fresh_args:
second = model(**self.inputs_dict(0))
else:
second = model(**inputs_dict)
if isinstance(second, dict):
second = second.to_tuple()[0]
out_1 = first.cpu().numpy()
out_2 = second.cpu().numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, expected_max_diff)
def test_output(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.to_tuple()[0]
self.assertIsNotNone(output)
# input & output have to have the same shape
input_tensor = inputs_dict[self.main_input_name]
expected_shape = input_tensor.shape
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
def test_model_from_pretrained(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
# test if the model can be loaded from the config
# and has all the expected shape
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname, safe_serialization=False)
new_model = self.model_class.from_pretrained(tmpdirname)
new_model.to(torch_device)
new_model.eval()
# check if all parameters shape are the same
for param_name in model.state_dict().keys():
param_1 = model.state_dict()[param_name]
param_2 = new_model.state_dict()[param_name]
self.assertEqual(param_1.shape, param_2.shape)
with torch.no_grad():
output_1 = model(**inputs_dict)
if isinstance(output_1, dict):
output_1 = output_1.to_tuple()[0]
output_2 = new_model(**inputs_dict)
if isinstance(output_2, dict):
output_2 = output_2.to_tuple()[0]
self.assertEqual(output_1.shape, output_2.shape)
@require_torch_accelerator_with_training
def test_training(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.train()
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.to_tuple()[0]
input_tensor = inputs_dict[self.main_input_name]
noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
loss = torch.nn.functional.mse_loss(output, noise)
loss.backward()
@require_torch_accelerator_with_training
def test_ema_training(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.train()
ema_model = EMAModel(model.parameters())
output = model(**inputs_dict)
if isinstance(output, dict):
output = output.to_tuple()[0]
input_tensor = inputs_dict[self.main_input_name]
noise = torch.randn((input_tensor.shape[0],) + self.output_shape).to(torch_device)
loss = torch.nn.functional.mse_loss(output, noise)
loss.backward()
ema_model.step(model.parameters())
def test_outputs_equivalence(self):
def set_nan_tensor_to_zero(t):
# Temporary fallback until `aten::_index_put_impl_` is implemented in mps
# Track progress in https://github.com/pytorch/pytorch/issues/77764
device = t.device
if device.type == "mps":
t = t.to("cpu")
t[t != t] = 0
return t.to(device)
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, Dict):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
),
)
if self.forward_requires_fresh_args:
model = self.model_class(**self.init_dict)
else:
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
if self.forward_requires_fresh_args:
outputs_dict = model(**self.inputs_dict(0))
outputs_tuple = model(**self.inputs_dict(0), return_dict=False)
else:
outputs_dict = model(**inputs_dict)
outputs_tuple = model(**inputs_dict, return_dict=False)
recursive_check(outputs_tuple, outputs_dict)
@require_torch_accelerator_with_training
def test_enable_disable_gradient_checkpointing(self):
if not self.model_class._supports_gradient_checkpointing:
return # Skip test if model does not support gradient checkpointing
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
# at init model should have gradient checkpointing disabled
model = self.model_class(**init_dict)
self.assertFalse(model.is_gradient_checkpointing)
# check enable works
model.enable_gradient_checkpointing()
self.assertTrue(model.is_gradient_checkpointing)
# check disable works
model.disable_gradient_checkpointing()
self.assertFalse(model.is_gradient_checkpointing)
def test_deprecated_kwargs(self):
has_kwarg_in_model_class = "kwargs" in inspect.signature(self.model_class.__init__).parameters
has_deprecated_kwarg = len(self.model_class._deprecated_kwargs) > 0
if has_kwarg_in_model_class and not has_deprecated_kwarg:
raise ValueError(
f"{self.model_class} has `**kwargs` in its __init__ method but has not defined any deprecated kwargs"
" under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if there are"
" no deprecated arguments or add the deprecated argument with `_deprecated_kwargs ="
" [<deprecated_argument>]`"
)
if not has_kwarg_in_model_class and has_deprecated_kwarg:
raise ValueError(
f"{self.model_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated kwargs"
" under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs` argument to"
f" {self.model_class}.__init__ if there are deprecated arguments or remove the deprecated argument"
" from `_deprecated_kwargs = [<deprecated_argument>]`"
)
@require_torch_gpu
def test_cpu_offload(self):
config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**config).eval()
if model._no_split_modules is None:
return
model = model.to(torch_device)
torch.manual_seed(0)
base_output = model(**inputs_dict)
model_size = compute_module_sizes(model)[""]
# We test several splits of sizes to make sure it works.
max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
with tempfile.TemporaryDirectory() as tmp_dir:
model.cpu().save_pretrained(tmp_dir)
for max_size in max_gpu_sizes:
max_memory = {0: max_size, "cpu": model_size * 2}
new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
# Making sure part of the model will actually end up offloaded
self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})
self.check_device_map_is_respected(new_model, new_model.hf_device_map)
torch.manual_seed(0)
new_output = new_model(**inputs_dict)
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
@require_torch_gpu
def test_disk_offload_without_safetensors(self):
config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**config).eval()
if model._no_split_modules is None:
return
model = model.to(torch_device)
torch.manual_seed(0)
base_output = model(**inputs_dict)
model_size = compute_module_sizes(model)[""]
with tempfile.TemporaryDirectory() as tmp_dir:
model.cpu().save_pretrained(tmp_dir, safe_serialization=False)
with self.assertRaises(ValueError):
max_size = int(self.model_split_percents[0] * model_size)
max_memory = {0: max_size, "cpu": max_size}
# This errors out because it's missing an offload folder
new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
max_size = int(self.model_split_percents[0] * model_size)
max_memory = {0: max_size, "cpu": max_size}
new_model = self.model_class.from_pretrained(
tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
)
self.check_device_map_is_respected(new_model, new_model.hf_device_map)
torch.manual_seed(0)
new_output = new_model(**inputs_dict)
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
@require_torch_gpu
def test_disk_offload_with_safetensors(self):
config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**config).eval()
if model._no_split_modules is None:
return
model = model.to(torch_device)
torch.manual_seed(0)
base_output = model(**inputs_dict)
model_size = compute_module_sizes(model)[""]
with tempfile.TemporaryDirectory() as tmp_dir:
model.cpu().save_pretrained(tmp_dir)
max_size = int(self.model_split_percents[0] * model_size)
max_memory = {0: max_size, "cpu": max_size}
new_model = self.model_class.from_pretrained(
tmp_dir, device_map="auto", offload_folder=tmp_dir, max_memory=max_memory
)
self.check_device_map_is_respected(new_model, new_model.hf_device_map)
torch.manual_seed(0)
new_output = new_model(**inputs_dict)
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
@require_torch_multi_gpu
def test_model_parallelism(self):
config, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**config).eval()
if model._no_split_modules is None:
return
model = model.to(torch_device)
torch.manual_seed(0)
base_output = model(**inputs_dict)
model_size = compute_module_sizes(model)[""]
# We test several splits of sizes to make sure it works.
max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents[1:]]
with tempfile.TemporaryDirectory() as tmp_dir:
model.cpu().save_pretrained(tmp_dir)
for max_size in max_gpu_sizes:
max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
new_model = self.model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
# Making sure part of the model will actually end up offloaded
self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})
self.check_device_map_is_respected(new_model, new_model.hf_device_map)
torch.manual_seed(0)
new_output = new_model(**inputs_dict)
self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
@is_staging_test
class ModelPushToHubTester(unittest.TestCase):
identifier = uuid.uuid4()
repo_id = f"test-model-{identifier}"
org_repo_id = f"valid_org/{repo_id}-org"
def test_push_to_hub(self):
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
model.push_to_hub(self.repo_id, token=TOKEN)
new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}")
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
# Reset repo
delete_repo(token=TOKEN, repo_id=self.repo_id)
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, repo_id=self.repo_id, push_to_hub=True, token=TOKEN)
new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}")
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
# Reset repo
delete_repo(self.repo_id, token=TOKEN)
def test_push_to_hub_in_organization(self):
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
model.push_to_hub(self.org_repo_id, token=TOKEN)
new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id)
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
# Reset repo
delete_repo(token=TOKEN, repo_id=self.org_repo_id)
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir, push_to_hub=True, token=TOKEN, repo_id=self.org_repo_id)
new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id)
for p1, p2 in zip(model.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
# Reset repo
delete_repo(self.org_repo_id, token=TOKEN)
@unittest.skipIf(
not is_jinja_available(),
reason="Model card tests cannot be performed without Jinja installed.",
)
def test_push_to_hub_library_name(self):
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
model.push_to_hub(self.repo_id, token=TOKEN)
model_card = ModelCard.load(f"{USER}/{self.repo_id}", token=TOKEN).data
assert model_card.library_name == "diffusers"
# Reset repo
delete_repo(self.repo_id, token=TOKEN)