dreambooth-dog-1
/
diffusers
/examples
/research_projects
/onnxruntime
/unconditional_image_generation
/train_unconditional.py
| import argparse | |
| import inspect | |
| import logging | |
| import math | |
| import os | |
| from pathlib import Path | |
| import accelerate | |
| import datasets | |
| import torch | |
| import torch.nn.functional as F | |
| from accelerate import Accelerator | |
| from accelerate.logging import get_logger | |
| from accelerate.utils import ProjectConfiguration | |
| from datasets import load_dataset | |
| from huggingface_hub import create_repo, upload_folder | |
| from onnxruntime.training.optim.fp16_optimizer import FP16_Optimizer as ORT_FP16_Optimizer | |
| from onnxruntime.training.ortmodule import ORTModule | |
| from packaging import version | |
| from torchvision import transforms | |
| from tqdm.auto import tqdm | |
| import diffusers | |
| from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel | |
| from diffusers.optimization import get_scheduler | |
| from diffusers.training_utils import EMAModel | |
| from diffusers.utils import check_min_version, is_accelerate_version, is_tensorboard_available, is_wandb_available | |
| from diffusers.utils.import_utils import is_xformers_available | |
| # Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
| check_min_version("0.17.0.dev0") | |
| logger = get_logger(__name__, log_level="INFO") | |
| def _extract_into_tensor(arr, timesteps, broadcast_shape): | |
| """ | |
| Extract values from a 1-D numpy array for a batch of indices. | |
| :param arr: the 1-D numpy array. | |
| :param timesteps: a tensor of indices into the array to extract. | |
| :param broadcast_shape: a larger shape of K dimensions with the batch | |
| dimension equal to the length of timesteps. | |
| :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. | |
| """ | |
| if not isinstance(arr, torch.Tensor): | |
| arr = torch.from_numpy(arr) | |
| res = arr[timesteps].float().to(timesteps.device) | |
| while len(res.shape) < len(broadcast_shape): | |
| res = res[..., None] | |
| return res.expand(broadcast_shape) | |
| def parse_args(): | |
| parser = argparse.ArgumentParser(description="Simple example of a training script.") | |
| parser.add_argument( | |
| "--dataset_name", | |
| type=str, | |
| default=None, | |
| help=( | |
| "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," | |
| " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," | |
| " or to a folder containing files that HF Datasets can understand." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--dataset_config_name", | |
| type=str, | |
| default=None, | |
| help="The config of the Dataset, leave as None if there's only one config.", | |
| ) | |
| parser.add_argument( | |
| "--model_config_name_or_path", | |
| type=str, | |
| default=None, | |
| help="The config of the UNet model to train, leave as None to use standard DDPM configuration.", | |
| ) | |
| parser.add_argument( | |
| "--train_data_dir", | |
| type=str, | |
| default=None, | |
| help=( | |
| "A folder containing the training data. Folder contents must follow the structure described in" | |
| " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" | |
| " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--output_dir", | |
| type=str, | |
| default="ddpm-model-64", | |
| help="The output directory where the model predictions and checkpoints will be written.", | |
| ) | |
| parser.add_argument("--overwrite_output_dir", action="store_true") | |
| parser.add_argument( | |
| "--cache_dir", | |
| type=str, | |
| default=None, | |
| help="The directory where the downloaded models and datasets will be stored.", | |
| ) | |
| parser.add_argument( | |
| "--resolution", | |
| type=int, | |
| default=64, | |
| help=( | |
| "The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
| " resolution" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--center_crop", | |
| default=False, | |
| action="store_true", | |
| help=( | |
| "Whether to center crop the input images to the resolution. If not set, the images will be randomly" | |
| " cropped. The images will be resized to the resolution first before cropping." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--random_flip", | |
| default=False, | |
| action="store_true", | |
| help="whether to randomly flip images horizontally", | |
| ) | |
| parser.add_argument( | |
| "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." | |
| ) | |
| parser.add_argument( | |
| "--eval_batch_size", type=int, default=16, help="The number of images to generate for evaluation." | |
| ) | |
| parser.add_argument( | |
| "--dataloader_num_workers", | |
| type=int, | |
| default=0, | |
| help=( | |
| "The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main" | |
| " process." | |
| ), | |
| ) | |
| parser.add_argument("--num_epochs", type=int, default=100) | |
| parser.add_argument("--save_images_epochs", type=int, default=10, help="How often to save images during training.") | |
| parser.add_argument( | |
| "--save_model_epochs", type=int, default=10, help="How often to save the model during training." | |
| ) | |
| parser.add_argument( | |
| "--gradient_accumulation_steps", | |
| type=int, | |
| default=1, | |
| help="Number of updates steps to accumulate before performing a backward/update pass.", | |
| ) | |
| parser.add_argument( | |
| "--learning_rate", | |
| type=float, | |
| default=1e-4, | |
| help="Initial learning rate (after the potential warmup period) to use.", | |
| ) | |
| parser.add_argument( | |
| "--lr_scheduler", | |
| type=str, | |
| default="cosine", | |
| help=( | |
| 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
| ' "constant", "constant_with_warmup"]' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
| ) | |
| parser.add_argument("--adam_beta1", type=float, default=0.95, help="The beta1 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
| parser.add_argument( | |
| "--adam_weight_decay", type=float, default=1e-6, help="Weight decay magnitude for the Adam optimizer." | |
| ) | |
| parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.") | |
| parser.add_argument( | |
| "--use_ema", | |
| action="store_true", | |
| help="Whether to use Exponential Moving Average for the final model weights.", | |
| ) | |
| parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma value for the EMA decay.") | |
| parser.add_argument("--ema_power", type=float, default=3 / 4, help="The power value for the EMA decay.") | |
| parser.add_argument("--ema_max_decay", type=float, default=0.9999, help="The maximum decay magnitude for EMA.") | |
| parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
| parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
| parser.add_argument( | |
| "--hub_model_id", | |
| type=str, | |
| default=None, | |
| help="The name of the repository to keep in sync with the local `output_dir`.", | |
| ) | |
| parser.add_argument( | |
| "--hub_private_repo", action="store_true", help="Whether or not to create a private repository." | |
| ) | |
| parser.add_argument( | |
| "--logger", | |
| type=str, | |
| default="tensorboard", | |
| choices=["tensorboard", "wandb"], | |
| help=( | |
| "Whether to use [tensorboard](https://www.tensorflow.org/tensorboard) or [wandb](https://www.wandb.ai)" | |
| " for experiment tracking and logging of model metrics and model checkpoints" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--logging_dir", | |
| type=str, | |
| default="logs", | |
| help=( | |
| "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
| " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
| ), | |
| ) | |
| parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
| parser.add_argument( | |
| "--mixed_precision", | |
| type=str, | |
| default="no", | |
| choices=["no", "fp16", "bf16"], | |
| help=( | |
| "Whether to use mixed precision. Choose" | |
| "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." | |
| "and an Nvidia Ampere GPU." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--prediction_type", | |
| type=str, | |
| default="epsilon", | |
| choices=["epsilon", "sample"], | |
| help="Whether the model should predict the 'epsilon'/noise error or directly the reconstructed image 'x0'.", | |
| ) | |
| parser.add_argument("--ddpm_num_steps", type=int, default=1000) | |
| parser.add_argument("--ddpm_num_inference_steps", type=int, default=1000) | |
| parser.add_argument("--ddpm_beta_schedule", type=str, default="linear") | |
| parser.add_argument( | |
| "--checkpointing_steps", | |
| type=int, | |
| default=500, | |
| help=( | |
| "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" | |
| " training using `--resume_from_checkpoint`." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--checkpoints_total_limit", | |
| type=int, | |
| default=None, | |
| help=( | |
| "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`." | |
| " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state" | |
| " for more docs" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--resume_from_checkpoint", | |
| type=str, | |
| default=None, | |
| help=( | |
| "Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
| ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." | |
| ) | |
| args = parser.parse_args() | |
| env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
| if env_local_rank != -1 and env_local_rank != args.local_rank: | |
| args.local_rank = env_local_rank | |
| if args.dataset_name is None and args.train_data_dir is None: | |
| raise ValueError("You must specify either a dataset name from the hub or a train data directory.") | |
| return args | |
| def main(args): | |
| if args.report_to == "wandb" and args.hub_token is not None: | |
| raise ValueError( | |
| "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." | |
| " Please use `huggingface-cli login` to authenticate with the Hub." | |
| ) | |
| logging_dir = os.path.join(args.output_dir, args.logging_dir) | |
| accelerator_project_config = ProjectConfiguration( | |
| total_limit=args.checkpoints_total_limit, project_dir=args.output_dir, logging_dir=logging_dir | |
| ) | |
| accelerator = Accelerator( | |
| gradient_accumulation_steps=args.gradient_accumulation_steps, | |
| mixed_precision=args.mixed_precision, | |
| log_with=args.report_to, | |
| project_config=accelerator_project_config, | |
| ) | |
| # Disable AMP for MPS. | |
| if torch.backends.mps.is_available(): | |
| accelerator.native_amp = False | |
| if args.logger == "tensorboard": | |
| if not is_tensorboard_available(): | |
| raise ImportError("Make sure to install tensorboard if you want to use it for logging during training.") | |
| elif args.logger == "wandb": | |
| if not is_wandb_available(): | |
| raise ImportError("Make sure to install wandb if you want to use it for logging during training.") | |
| import wandb | |
| # `accelerate` 0.16.0 will have better support for customized saving | |
| if version.parse(accelerate.__version__) >= version.parse("0.16.0"): | |
| # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format | |
| def save_model_hook(models, weights, output_dir): | |
| if accelerator.is_main_process: | |
| if args.use_ema: | |
| ema_model.save_pretrained(os.path.join(output_dir, "unet_ema")) | |
| for i, model in enumerate(models): | |
| model.save_pretrained(os.path.join(output_dir, "unet")) | |
| # make sure to pop weight so that corresponding model is not saved again | |
| weights.pop() | |
| def load_model_hook(models, input_dir): | |
| if args.use_ema: | |
| load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DModel) | |
| ema_model.load_state_dict(load_model.state_dict()) | |
| ema_model.to(accelerator.device) | |
| del load_model | |
| for i in range(len(models)): | |
| # pop models so that they are not loaded again | |
| model = models.pop() | |
| # load diffusers style into model | |
| load_model = UNet2DModel.from_pretrained(input_dir, subfolder="unet") | |
| model.register_to_config(**load_model.config) | |
| model.load_state_dict(load_model.state_dict()) | |
| del load_model | |
| accelerator.register_save_state_pre_hook(save_model_hook) | |
| accelerator.register_load_state_pre_hook(load_model_hook) | |
| # Make one log on every process with the configuration for debugging. | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO, | |
| ) | |
| logger.info(accelerator.state, main_process_only=False) | |
| if accelerator.is_local_main_process: | |
| datasets.utils.logging.set_verbosity_warning() | |
| diffusers.utils.logging.set_verbosity_info() | |
| else: | |
| datasets.utils.logging.set_verbosity_error() | |
| diffusers.utils.logging.set_verbosity_error() | |
| # Handle the repository creation | |
| if accelerator.is_main_process: | |
| if args.output_dir is not None: | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| if args.push_to_hub: | |
| repo_id = create_repo( | |
| repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token | |
| ).repo_id | |
| # Initialize the model | |
| if args.model_config_name_or_path is None: | |
| model = UNet2DModel( | |
| sample_size=args.resolution, | |
| in_channels=3, | |
| out_channels=3, | |
| layers_per_block=2, | |
| block_out_channels=(128, 128, 256, 256, 512, 512), | |
| down_block_types=( | |
| "DownBlock2D", | |
| "DownBlock2D", | |
| "DownBlock2D", | |
| "DownBlock2D", | |
| "AttnDownBlock2D", | |
| "DownBlock2D", | |
| ), | |
| up_block_types=( | |
| "UpBlock2D", | |
| "AttnUpBlock2D", | |
| "UpBlock2D", | |
| "UpBlock2D", | |
| "UpBlock2D", | |
| "UpBlock2D", | |
| ), | |
| ) | |
| else: | |
| config = UNet2DModel.load_config(args.model_config_name_or_path) | |
| model = UNet2DModel.from_config(config) | |
| # Create EMA for the model. | |
| if args.use_ema: | |
| ema_model = EMAModel( | |
| model.parameters(), | |
| decay=args.ema_max_decay, | |
| use_ema_warmup=True, | |
| inv_gamma=args.ema_inv_gamma, | |
| power=args.ema_power, | |
| model_cls=UNet2DModel, | |
| model_config=model.config, | |
| ) | |
| if args.enable_xformers_memory_efficient_attention: | |
| if is_xformers_available(): | |
| import xformers | |
| xformers_version = version.parse(xformers.__version__) | |
| if xformers_version == version.parse("0.0.16"): | |
| logger.warning( | |
| "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." | |
| ) | |
| model.enable_xformers_memory_efficient_attention() | |
| else: | |
| raise ValueError("xformers is not available. Make sure it is installed correctly") | |
| # Initialize the scheduler | |
| accepts_prediction_type = "prediction_type" in set(inspect.signature(DDPMScheduler.__init__).parameters.keys()) | |
| if accepts_prediction_type: | |
| noise_scheduler = DDPMScheduler( | |
| num_train_timesteps=args.ddpm_num_steps, | |
| beta_schedule=args.ddpm_beta_schedule, | |
| prediction_type=args.prediction_type, | |
| ) | |
| else: | |
| noise_scheduler = DDPMScheduler(num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule) | |
| # Initialize the optimizer | |
| optimizer = torch.optim.AdamW( | |
| model.parameters(), | |
| lr=args.learning_rate, | |
| betas=(args.adam_beta1, args.adam_beta2), | |
| weight_decay=args.adam_weight_decay, | |
| eps=args.adam_epsilon, | |
| ) | |
| optimizer = ORT_FP16_Optimizer(optimizer) | |
| # Get the datasets: you can either provide your own training and evaluation files (see below) | |
| # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). | |
| # In distributed training, the load_dataset function guarantees that only one local process can concurrently | |
| # download the dataset. | |
| if args.dataset_name is not None: | |
| dataset = load_dataset( | |
| args.dataset_name, | |
| args.dataset_config_name, | |
| cache_dir=args.cache_dir, | |
| split="train", | |
| ) | |
| else: | |
| dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train") | |
| # See more about loading custom images at | |
| # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder | |
| # Preprocessing the datasets and DataLoaders creation. | |
| augmentations = transforms.Compose( | |
| [ | |
| transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), | |
| transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution), | |
| transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.5], [0.5]), | |
| ] | |
| ) | |
| def transform_images(examples): | |
| images = [augmentations(image.convert("RGB")) for image in examples["image"]] | |
| return {"input": images} | |
| logger.info(f"Dataset size: {len(dataset)}") | |
| dataset.set_transform(transform_images) | |
| train_dataloader = torch.utils.data.DataLoader( | |
| dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers | |
| ) | |
| # Initialize the learning rate scheduler | |
| lr_scheduler = get_scheduler( | |
| args.lr_scheduler, | |
| optimizer=optimizer, | |
| num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, | |
| num_training_steps=(len(train_dataloader) * args.num_epochs), | |
| ) | |
| # Prepare everything with our `accelerator`. | |
| model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
| model, optimizer, train_dataloader, lr_scheduler | |
| ) | |
| if args.use_ema: | |
| ema_model.to(accelerator.device) | |
| # We need to initialize the trackers we use, and also store our configuration. | |
| # The trackers initializes automatically on the main process. | |
| if accelerator.is_main_process: | |
| run = os.path.split(__file__)[-1].split(".")[0] | |
| accelerator.init_trackers(run) | |
| model = ORTModule(model) | |
| total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| max_train_steps = args.num_epochs * num_update_steps_per_epoch | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num examples = {len(dataset)}") | |
| logger.info(f" Num Epochs = {args.num_epochs}") | |
| logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
| logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
| logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
| logger.info(f" Total optimization steps = {max_train_steps}") | |
| global_step = 0 | |
| first_epoch = 0 | |
| # Potentially load in the weights and states from a previous save | |
| if args.resume_from_checkpoint: | |
| if args.resume_from_checkpoint != "latest": | |
| path = os.path.basename(args.resume_from_checkpoint) | |
| else: | |
| # Get the most recent checkpoint | |
| dirs = os.listdir(args.output_dir) | |
| dirs = [d for d in dirs if d.startswith("checkpoint")] | |
| dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
| path = dirs[-1] if len(dirs) > 0 else None | |
| if path is None: | |
| accelerator.print( | |
| f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
| ) | |
| args.resume_from_checkpoint = None | |
| else: | |
| accelerator.print(f"Resuming from checkpoint {path}") | |
| accelerator.load_state(os.path.join(args.output_dir, path)) | |
| global_step = int(path.split("-")[1]) | |
| resume_global_step = global_step * args.gradient_accumulation_steps | |
| first_epoch = global_step // num_update_steps_per_epoch | |
| resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) | |
| # Train! | |
| for epoch in range(first_epoch, args.num_epochs): | |
| model.train() | |
| progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process) | |
| progress_bar.set_description(f"Epoch {epoch}") | |
| for step, batch in enumerate(train_dataloader): | |
| # Skip steps until we reach the resumed step | |
| if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: | |
| if step % args.gradient_accumulation_steps == 0: | |
| progress_bar.update(1) | |
| continue | |
| clean_images = batch["input"] | |
| # Sample noise that we'll add to the images | |
| noise = torch.randn( | |
| clean_images.shape, dtype=(torch.float32 if args.mixed_precision == "no" else torch.float16) | |
| ).to(clean_images.device) | |
| bsz = clean_images.shape[0] | |
| # Sample a random timestep for each image | |
| timesteps = torch.randint( | |
| 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device | |
| ).long() | |
| # Add noise to the clean images according to the noise magnitude at each timestep | |
| # (this is the forward diffusion process) | |
| noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps) | |
| with accelerator.accumulate(model): | |
| # Predict the noise residual | |
| model_output = model(noisy_images, timesteps, return_dict=False)[0] | |
| if args.prediction_type == "epsilon": | |
| loss = F.mse_loss(model_output, noise) # this could have different weights! | |
| elif args.prediction_type == "sample": | |
| alpha_t = _extract_into_tensor( | |
| noise_scheduler.alphas_cumprod, timesteps, (clean_images.shape[0], 1, 1, 1) | |
| ) | |
| snr_weights = alpha_t / (1 - alpha_t) | |
| loss = snr_weights * F.mse_loss( | |
| model_output, clean_images, reduction="none" | |
| ) # use SNR weighting from distillation paper | |
| loss = loss.mean() | |
| else: | |
| raise ValueError(f"Unsupported prediction type: {args.prediction_type}") | |
| accelerator.backward(loss) | |
| if accelerator.sync_gradients: | |
| accelerator.clip_grad_norm_(model.parameters(), 1.0) | |
| optimizer.step() | |
| lr_scheduler.step() | |
| optimizer.zero_grad() | |
| # Checks if the accelerator has performed an optimization step behind the scenes | |
| if accelerator.sync_gradients: | |
| if args.use_ema: | |
| ema_model.step(model.parameters()) | |
| progress_bar.update(1) | |
| global_step += 1 | |
| if global_step % args.checkpointing_steps == 0: | |
| if accelerator.is_main_process: | |
| save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
| accelerator.save_state(save_path) | |
| logger.info(f"Saved state to {save_path}") | |
| logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step} | |
| if args.use_ema: | |
| logs["ema_decay"] = ema_model.cur_decay_value | |
| progress_bar.set_postfix(**logs) | |
| accelerator.log(logs, step=global_step) | |
| progress_bar.close() | |
| accelerator.wait_for_everyone() | |
| # Generate sample images for visual inspection | |
| if accelerator.is_main_process: | |
| if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1: | |
| unet = accelerator.unwrap_model(model) | |
| if args.use_ema: | |
| ema_model.store(unet.parameters()) | |
| ema_model.copy_to(unet.parameters()) | |
| pipeline = DDPMPipeline( | |
| unet=unet, | |
| scheduler=noise_scheduler, | |
| ) | |
| generator = torch.Generator(device=pipeline.device).manual_seed(0) | |
| # run pipeline in inference (sample random noise and denoise) | |
| images = pipeline( | |
| generator=generator, | |
| batch_size=args.eval_batch_size, | |
| num_inference_steps=args.ddpm_num_inference_steps, | |
| output_type="np", | |
| ).images | |
| if args.use_ema: | |
| ema_model.restore(unet.parameters()) | |
| # denormalize the images and save to tensorboard | |
| images_processed = (images * 255).round().astype("uint8") | |
| if args.logger == "tensorboard": | |
| if is_accelerate_version(">=", "0.17.0.dev0"): | |
| tracker = accelerator.get_tracker("tensorboard", unwrap=True) | |
| else: | |
| tracker = accelerator.get_tracker("tensorboard") | |
| tracker.add_images("test_samples", images_processed.transpose(0, 3, 1, 2), epoch) | |
| elif args.logger == "wandb": | |
| # Upcoming `log_images` helper coming in https://github.com/huggingface/accelerate/pull/962/files | |
| accelerator.get_tracker("wandb").log( | |
| {"test_samples": [wandb.Image(img) for img in images_processed], "epoch": epoch}, | |
| step=global_step, | |
| ) | |
| if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1: | |
| # save the model | |
| unet = accelerator.unwrap_model(model) | |
| if args.use_ema: | |
| ema_model.store(unet.parameters()) | |
| ema_model.copy_to(unet.parameters()) | |
| pipeline = DDPMPipeline( | |
| unet=unet, | |
| scheduler=noise_scheduler, | |
| ) | |
| pipeline.save_pretrained(args.output_dir) | |
| if args.use_ema: | |
| ema_model.restore(unet.parameters()) | |
| if args.push_to_hub: | |
| upload_folder( | |
| repo_id=repo_id, | |
| folder_path=args.output_dir, | |
| commit_message=f"Epoch {epoch}", | |
| ignore_patterns=["step_*", "epoch_*"], | |
| ) | |
| accelerator.end_training() | |
| if __name__ == "__main__": | |
| args = parse_args() | |
| main(args) | |