Upload README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,424 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SPG: Sequential Policy Gradient for Adaptive Hyperparameter Optimization
|
2 |
+
|
3 |
+
|
4 |
+
## Model zoo
|
5 |
+
We provide baseline models and SPG-trained models, all available for download at the following links:
|
6 |
+
|
7 |
+
|
8 |
+
`Table 1: Model comparison on the ImageNet-1K dataset.`
|
9 |
+
| Model | SPG | # Params | Acc@1 (%) | Acc@5 (%) | Weights |
|
10 |
+
|-------|------|----------|-----------|-----------|---------|
|
11 |
+
| MobileNet-V2 | ❌ | 3.5 M | 71.878 | 90.286 | <a href='https://download.pytorch.org/models/mobilenet_v2-b0353104.pth'><img src='https://img.shields.io/badge/PyTorch-IMAGENET1K_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> |
|
12 |
+
| MobileNet-V2 | ✅ | 3.5 M | 72.104 | 90.316 | <a href='https://github.com/pytorch/vision/tree/main/references/classification#mobilenetv2'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/mobilenet_v2-yellow'></a> |
|
13 |
+
| ResNet-50 | ❌ | 25.6 M | 76.130 | 92.862 | <a href='https://download.pytorch.org/models/resnet50-0676ba61.pth'><img src='https://img.shields.io/badge/PyTorch-IMAGENET1K_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> |
|
14 |
+
| ResNet-50 | ✅ | 25.6 M | 77.234 | 93.322 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/resnet50/model_35.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/resnet50-yellow'></a> |
|
15 |
+
| EfficientNet-V2-M | ❌ | 54.1 M | 85.112 | 97.156 | <a href='https://download.pytorch.org/models/efficientnet_v2_m-dc08266a.pth'><img src='https://img.shields.io/badge/PyTorch-IMAGENET1K_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> |
|
16 |
+
| EfficientNet-V2-M | ✅ | 54.1 M | 85.218 | 97.208 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/efficientnet_v2_m/model_7.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/efficientnet_v2_m-yellow'></a> |
|
17 |
+
| ViT-B16 | ❌ | 86.6 M | 81.072 | 95.318 | <a href='https://download.pytorch.org/models/vit_b_16-c867db91.pth'><img src='https://img.shields.io/badge/PyTorch-IMAGENET1K_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> |
|
18 |
+
| ViT-B16 | ✅ | 86.6 M | 81.092 | 95.304 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/vit_b_16/model_4.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/vit_b_16-yellow'></a> |
|
19 |
+
|
20 |
+
|
21 |
+
`Table 2: All models are evaluated a subset of COCO val2017, on the 21 categories (including
|
22 |
+
"background") that are present in the Pascal VOC dataset.`
|
23 |
+
|
24 |
+
`All model reported on TorchVision (with weight COCO_WITH_VOC_LABELS_V1) were benchmarked using only 20 categories. Researchers should first download the pre-trained model from TorchVision and conduct re-evaluation under the 21-category framework.`
|
25 |
+
|
26 |
+
| Model | SPG | # Params | mIoU (%) | pixelwise Acc (%) | Weights |
|
27 |
+
|---------------------|-----|----------|------------|---------------------|---------|
|
28 |
+
| FCN-ResNet50 | ❌ | 35.3 M | 58.9 | 90.9 | <a href='https://download.pytorch.org/models/fcn_resnet50_coco-1167a1af.pth'><img src='https://img.shields.io/badge/PyTorch-COCO_WITH_VOC_LABELS_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> |
|
29 |
+
| FCN-ResNet50 | ✅ | 35.3 M | 59.4 | 90.9 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/fcn_resnet50/model_4.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/fcn_resnet50-yellow'></a> |
|
30 |
+
| FCN-ResNet101 | ❌ | 54.3 M | 62.2 | 91.1 | <a href='https://download.pytorch.org/models/fcn_resnet101_coco-7ecb50ca.pth'><img src='https://img.shields.io/badge/PyTorch-COCO_WITH_VOC_LABELS_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> |
|
31 |
+
| FCN-ResNet101 | ✅ | 54.3 M | 62.4 | 91.1 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/fcn_resnet101/model_4.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/fcn_resnet101-yellow'></a> |
|
32 |
+
| DeepLabV3-ResNet50 | ❌ | 42.0 M | 63.8 | 91.5 | <a href='https://download.pytorch.org/models/deeplabv3_resnet50_coco-cd0a2569.pth'><img src='https://img.shields.io/badge/PyTorch-COCO_WITH_VOC_LABELS_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> |
|
33 |
+
| DeepLabV3-ResNet50 | ✅ | 42.0 M | 64.2 | 91.6 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/deeplabv3_resnet50/model_4.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/deeplabv3_resnet50-yellow'></a> |
|
34 |
+
| DeepLabV3-ResNet101 | ❌ | 61.0 M | 65.3 | 91.7 | <a href='https://download.pytorch.org/models/deeplabv3_resnet101_coco-586e9e4e.pth'><img src='https://img.shields.io/badge/PyTorch-COCO_WITH_VOC_LABELS_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> |
|
35 |
+
| DeepLabV3-ResNet101 | ✅ | 61.0 M | 65.7 | 91.8 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/deeplabv3_resnet101/model_4.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/deeplabv3_resnet101-yellow'></a> |
|
36 |
+
|
37 |
+
|
38 |
+
`Table 3: Performance of models for transfer learning trained with fine-tuning (FT) vs. SPG.`
|
39 |
+
| Task | SPG | Metric Type | Performance (%) | Weights |
|
40 |
+
|-------|------|------------------|-----------------|---------|
|
41 |
+
| CoLA | ❌ | Matthews coor | 56.53 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-text_classification-yellow'></a> |
|
42 |
+
| CoLA | ✅ | Matthews coor | 62.13 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/cola'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/CoLA-yellow'></a> |
|
43 |
+
| SST-2 | ❌ | Accuracy | 92.32 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-text_classification-yellow'></a> |
|
44 |
+
| SST-2 | ✅ | Accuracy | 92.54 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/sst2'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/SST2-yellow'></a> |
|
45 |
+
| MRPC | ❌ | F1/Accuracy | 88.85/84.09 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-text_classification-yellow'></a> |
|
46 |
+
| MRPC | ✅ | F1/Accuracy | 91.10/87.25 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/mrpc'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/MRPC-yellow'></a> |
|
47 |
+
| QQP | ❌ | F1/Accuracy | 87.49/90.71 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-text_classification-yellow'></a> |
|
48 |
+
| QQP | ✅ | F1/Accuracy | 89.72/90.88 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/qqp'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/QQP-yellow'></a> |
|
49 |
+
| QNLI | ❌ | Accuracy | 90.66 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-text_classification-yellow'></a> |
|
50 |
+
| QNLI | ✅ | Accuracy | 91.10 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/qnli'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/QNLI-yellow'></a> |
|
51 |
+
| RTE | ❌ | Accuracy | 65.70 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-text_classification-yellow'></a> |
|
52 |
+
| RTE | ✅ | Accuracy | 72.56 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/rte'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/RTE-yellow'></a> |
|
53 |
+
| Q/A* | ❌ | F1/Extra match | 88.52/81.22 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-question_answering-yellow'></a> |
|
54 |
+
| Q/A* | ✅ | F1/Extra match | 88.67/81.51 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/qa'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/QA-yellow'></a> |
|
55 |
+
| AC† | ❌ | Accuracy | 98.26 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/audio-classification'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-audio_classification-yellow'></a> |
|
56 |
+
| AC† | ✅ | Accuracy | 98.31 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/ac'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/AC-yellow'></a> |
|
57 |
+
|
58 |
+
## Requirements
|
59 |
+
|
60 |
+
1. Install `torch>=2.0.0+cu118`.
|
61 |
+
2. To install other pip packages:
|
62 |
+
```setup
|
63 |
+
pip install -r requirements.txt
|
64 |
+
```
|
65 |
+
3. Prepare the [ImageNet](http://image-net.org/) dataset manually and place it in `/path/to/imagenet`. For image classification examples, pass the argument `--data-path=/path/to/imagenet` to the training script. The extracted dataset directory should follow this structure:
|
66 |
+
```setup
|
67 |
+
/path/to/imagenet/:
|
68 |
+
train/:
|
69 |
+
n01440764:
|
70 |
+
n01440764_18.JPEG ...
|
71 |
+
n01443537:
|
72 |
+
n01443537_2.JPEG ...
|
73 |
+
val/:
|
74 |
+
n01440764:
|
75 |
+
ILSVRC2012_val_00000293.JPEG ...
|
76 |
+
n01443537:
|
77 |
+
ILSVRC2012_val_00000236.JPEG ...
|
78 |
+
```
|
79 |
+
4. Prepare the [MS-COCO 2017](https://cocodataset.org/#home) dataset manually and place it in `/path/to/coco`. For image classification examples, pass the argument `--data-path=/path/to/coco` to the training script. The extracted dataset directory should follow this structure:
|
80 |
+
```setup
|
81 |
+
/path/to/coco/:
|
82 |
+
annotations:
|
83 |
+
many_json_files.json ...
|
84 |
+
train2017:
|
85 |
+
000000000009.jpg ...
|
86 |
+
val2017:
|
87 |
+
000000000139.jpg ...
|
88 |
+
```
|
89 |
+
5. For [🗣️ Keyword Spotting subset](https://huggingface.co/datasets/s3prl/superb#ks), [Common Language](https://huggingface.co/datasets/speechbrain/common_language), [SQuAD](https://huggingface.co/datasets/rajpurkar/squad), [Common Voice](https://huggingface.co/datasets/legacy-datasets/common_voice), [GLUE](https://gluebenchmark.com/) and [WMT](https://huggingface.co/datasets/wmt/wmt17) datasets, manual downloading is not required — they will be automatically loaded via the Hugging Face Datasets library when running our `audio-classification`, `question-answering`, `speech-recognition`, `text-classification`, or `translation` examples.
|
90 |
+
|
91 |
+
## Training
|
92 |
+
|
93 |
+
### Model retraining
|
94 |
+
We utilize recipes similar to those in [PyTorch Vision's classification reference](https://github.com/pytorch/vision/blob/main/references/classification/README.md) to retrain MobileNet-V2, ResNet, EfficientNet-V2, and ViT using our SPG on ImageNet. You can run the following command:
|
95 |
+
|
96 |
+
```train
|
97 |
+
cd image-classification
|
98 |
+
|
99 |
+
# MobileNet-V2
|
100 |
+
torchrun --nproc_per_node=4 train.py\
|
101 |
+
--data-path /path/to/imagenet/\
|
102 |
+
--model mobilenet_v2 --output-dir mobilenet_v2 --weights MobileNet_V2_Weights.IMAGENET1K_V1\
|
103 |
+
--batch-size 192 --epochs 40 --lr 0.0004 --lr-step-size 10 --lr-gamma 0.5 --wd 0.00004 --apply-trp --trp-depths 1 --trp-p 0.15 --trp-lambdas 0.4 0.2 0.1
|
104 |
+
|
105 |
+
# ResNet-50
|
106 |
+
torchrun --nproc_per_node=4 train.py\
|
107 |
+
--data-path /path/to/imagenet/\
|
108 |
+
--model resnet50 --output-dir resnet50 --weights ResNet50_Weights.IMAGENET1K_V1\
|
109 |
+
--batch-size 64 --epochs 40 --lr 0.0004 --lr-step-size 10 --lr-gamma 0.5 --print-freq 100\
|
110 |
+
--apply-trp --trp-depths 1 --trp-p 0.2 --trp-lambdas 0.4 0.2 0.1
|
111 |
+
|
112 |
+
# EfficientNet-V2 M
|
113 |
+
torchrun --nproc_per_node=4 train.py \
|
114 |
+
--data-path /path/to/imagenet/\
|
115 |
+
--model efficientnet_v2_m --output-dir efficientnet_v2_m --weights EfficientNet_V2_M_Weights.IMAGENET1K_V1\
|
116 |
+
--epochs 10 --batch-size 64 --lr 5e-9 --lr-scheduler cosineannealinglr --weight-decay 0.00002 \
|
117 |
+
--lr-warmup-method constant --lr-warmup-epochs 8 --lr-warmup-decay 0. \
|
118 |
+
--auto-augment ta_wide --random-erase 0.1 --label-smoothing 0.1 --mixup-alpha 0.2 --cutmix-alpha 1.0 --norm-weight-decay 0.0 \
|
119 |
+
--train-crop-size 384 --val-crop-size 480 --val-resize-size 480 --ra-sampler --ra-reps 4 --print-freq 100\
|
120 |
+
--apply-trp --trp-depths 1 --trp-p 0.2 --trp-lambdas 0.4 0.2 0.1
|
121 |
+
|
122 |
+
# ViT-B-16
|
123 |
+
torchrun --nproc_per_node=4 train.py\
|
124 |
+
--data-path /path/to/imagenet/\
|
125 |
+
--model vit_b_16 --output-dir vit_b_16 --weights ViT_B_16_Weights.IMAGENET1K_V1\
|
126 |
+
--epochs 5 --batch-size 196 --opt adamw --lr 5e-9 --lr-scheduler cosineannealinglr --wd 0.3\
|
127 |
+
--lr-warmup-method constant --lr-warmup-epochs 3 --lr-warmup-decay 0. \
|
128 |
+
--amp --label-smoothing 0.11 --mixup-alpha 0.2 --auto-augment ra --clip-grad-norm 1 --cutmix-alpha 1.0\
|
129 |
+
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1 --print-freq 100
|
130 |
+
```
|
131 |
+
|
132 |
+
We utilize recipes similar to those in [PyTorch Vision's segmentation reference](https://github.com/pytorch/vision/blob/main/references/segmentation/README.md) to retrain FCN and DeepLab-V3 using our SPG on COCO dataset. You can run the following command:
|
133 |
+
|
134 |
+
```train
|
135 |
+
cd semantic-segmentation
|
136 |
+
|
137 |
+
# FCN-ResNet50
|
138 |
+
torchrun --nproc_per_node=4 train.py\
|
139 |
+
--workers 4 --dataset coco --data-path /path/to/coco/\
|
140 |
+
--model fcn_resnet50 --aux-loss --output-dir fcn_resnet50 --weights FCN_ResNet50_Weights.COCO_WITH_VOC_LABELS_V1\
|
141 |
+
--epochs 5 --batch-size 16 --lr 0.0002 --aux-loss --print-freq 100\
|
142 |
+
--lr-warmup-method constant --lr-warmup-epochs 3 --lr-warmup-decay 0. \
|
143 |
+
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1
|
144 |
+
|
145 |
+
# FCN-ResNet101
|
146 |
+
torchrun --nproc_per_node=4 train.py\
|
147 |
+
--workers 4 --dataset coco --data-path /path/to/coco/\
|
148 |
+
--model fcn_resnet101 --aux-loss --output-dir fcn_resnet101 --weights FCN_ResNet101_Weights.COCO_WITH_VOC_LABELS_V1\
|
149 |
+
--epochs 5 --batch-size 12 --lr 0.0002 --aux-loss --print-freq 100\
|
150 |
+
--lr-warmup-method constant --lr-warmup-epochs 3 --lr-warmup-decay 0. \
|
151 |
+
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1
|
152 |
+
|
153 |
+
# DeepLabV3-ResNet50
|
154 |
+
torchrun --nproc_per_node=4 train.py\
|
155 |
+
--workers 4 --dataset coco --data-path /path/to/coco/\
|
156 |
+
--model deeplabv3_resnet50 --aux-loss --output-dir deeplabv3_resnet50 --weights DeepLabV3_ResNet50_Weights.COCO_WITH_VOC_LABELS_V1\
|
157 |
+
--epochs 5 --batch-size 16 --lr 0.0002 --aux-loss --print-freq 100\
|
158 |
+
--lr-warmup-method constant --lr-warmup-epochs 3 --lr-warmup-decay 0. \
|
159 |
+
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1
|
160 |
+
|
161 |
+
# DeepLabV3-ResNet101
|
162 |
+
torchrun --nproc_per_node=4 train.py\
|
163 |
+
--workers 4 --dataset coco --data-path /path/to/coco/\
|
164 |
+
--model deeplabv3_resnet101 --aux-loss --output-dir deeplabv3_resnet101 --weights DeepLabV3_ResNet101_Weights.COCO_WITH_VOC_LABELS_V1\
|
165 |
+
--epochs 5 --batch-size 12 --lr 0.0002 --aux-loss --print-freq 100\
|
166 |
+
--lr-warmup-method constant --lr-warmup-epochs 3 --lr-warmup-decay 0. \
|
167 |
+
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1
|
168 |
+
```
|
169 |
+
|
170 |
+
### Transfer learning
|
171 |
+
We utilize recipes similar to those in [HuggingFace Transformers' Examples](https://github.com/huggingface/transformers/blob/main/examples/pytorch/README.md) to retrain BERT and Wav2Vec using our SPG on GLUE benchmark, SquAD dataset, and SUPERB benchmark. You can run the following command:
|
172 |
+
|
173 |
+
```train
|
174 |
+
cd text-classification
|
175 |
+
|
176 |
+
# Task: CoLA
|
177 |
+
CUDA_VISIBLE_DEVICES=0 python run_glue.py \
|
178 |
+
--model_name_or_path google-bert/bert-base-cased \
|
179 |
+
--task_name "cola" \
|
180 |
+
--do_train \
|
181 |
+
--do_eval \
|
182 |
+
--max_seq_length 128 \
|
183 |
+
--per_device_train_batch_size 32 \
|
184 |
+
--learning_rate 2.5e-5 \
|
185 |
+
--num_train_epochs 6 \
|
186 |
+
--output_dir "cola" \
|
187 |
+
--overwrite_output_dir \
|
188 |
+
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1
|
189 |
+
|
190 |
+
# Task: SST-2
|
191 |
+
CUDA_VISIBLE_DEVICES=0 python run_glue.py \
|
192 |
+
--model_name_or_path google-bert/bert-base-cased \
|
193 |
+
--task_name "sst2" \
|
194 |
+
--do_train \
|
195 |
+
--do_eval \
|
196 |
+
--max_seq_length 128 \
|
197 |
+
--per_device_train_batch_size 64 \
|
198 |
+
--learning_rate 3e-5 \
|
199 |
+
--num_train_epochs 5 \
|
200 |
+
--output_dir "sst2" \
|
201 |
+
--overwrite_output_dir \
|
202 |
+
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1
|
203 |
+
|
204 |
+
# Task: MRPC
|
205 |
+
CUDA_VISIBLE_DEVICES=0 python run_glue.py \
|
206 |
+
--model_name_or_path google-bert/bert-base-cased \
|
207 |
+
--task_name "mrpc" \
|
208 |
+
--do_train \
|
209 |
+
--do_eval \
|
210 |
+
--max_seq_length 128 \
|
211 |
+
--per_device_train_batch_size 16 \
|
212 |
+
--learning_rate 2e-5 \
|
213 |
+
--num_train_epochs 4 \
|
214 |
+
--output_dir "mrpc" \
|
215 |
+
--overwrite_output_dir \
|
216 |
+
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1
|
217 |
+
|
218 |
+
# Task: QQP
|
219 |
+
CUDA_VISIBLE_DEVICES=0 python run_glue.py \
|
220 |
+
--model_name_or_path google-bert/bert-base-cased \
|
221 |
+
--task_name "qqp" \
|
222 |
+
--do_train \
|
223 |
+
--do_eval \
|
224 |
+
--max_seq_length 128 \
|
225 |
+
--per_device_train_batch_size 32 \
|
226 |
+
--learning_rate 1e-5 \
|
227 |
+
--num_train_epochs 10 \
|
228 |
+
--output_dir "qqp" \
|
229 |
+
--overwrite_output_dir \
|
230 |
+
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1
|
231 |
+
|
232 |
+
# Task: QNLI
|
233 |
+
CUDA_VISIBLE_DEVICES=0 python run_glue.py \
|
234 |
+
--model_name_or_path google-bert/bert-base-cased \
|
235 |
+
--task_name "qnli" \
|
236 |
+
--do_train \
|
237 |
+
--do_eval \
|
238 |
+
--max_seq_length 128 \
|
239 |
+
--per_device_train_batch_size 32 \
|
240 |
+
--learning_rate 2e-5 \
|
241 |
+
--num_train_epochs 10 \
|
242 |
+
--output_dir "qnli" \
|
243 |
+
--overwrite_output_dir \
|
244 |
+
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1
|
245 |
+
|
246 |
+
# Task: RTE
|
247 |
+
CUDA_VISIBLE_DEVICES=0 python run_glue.py \
|
248 |
+
--model_name_or_path google-bert/bert-base-cased \
|
249 |
+
--task_name "rte" \
|
250 |
+
--do_train \
|
251 |
+
--do_eval \
|
252 |
+
--max_seq_length 128 \
|
253 |
+
--per_device_train_batch_size 32 \
|
254 |
+
--learning_rate 5e-5 \
|
255 |
+
--num_train_epochs 5 \
|
256 |
+
--output_dir "rte" \
|
257 |
+
--overwrite_output_dir \
|
258 |
+
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1
|
259 |
+
|
260 |
+
|
261 |
+
# Task: audio classification
|
262 |
+
cd ../audio-classification
|
263 |
+
CUDA_VISIBLE_DEVICES=0 python run_audio_classification.py \
|
264 |
+
--model_name_or_path facebook/wav2vec2-base \
|
265 |
+
--dataset_name superb \
|
266 |
+
--dataset_config_name ks \
|
267 |
+
--trust_remote_code \
|
268 |
+
--output_dir wav2vec2-base-ft-keyword-spotting \
|
269 |
+
--overwrite_output_dir \
|
270 |
+
--remove_unused_columns False \
|
271 |
+
--do_train \
|
272 |
+
--do_eval \
|
273 |
+
--fp16 \
|
274 |
+
--learning_rate 3e-5 \
|
275 |
+
--max_length_seconds 1 \
|
276 |
+
--attention_mask False \
|
277 |
+
--warmup_ratio 0.1 \
|
278 |
+
--num_train_epochs 8 \
|
279 |
+
--per_device_train_batch_size 64 \
|
280 |
+
--gradient_accumulation_steps 4 \
|
281 |
+
--per_device_eval_batch_size 32 \
|
282 |
+
--dataloader_num_workers 4 \
|
283 |
+
--logging_strategy steps \
|
284 |
+
--logging_steps 10 \
|
285 |
+
--eval_strategy epoch \
|
286 |
+
--save_strategy epoch \
|
287 |
+
--load_best_model_at_end True \
|
288 |
+
--metric_for_best_model accuracy \
|
289 |
+
--save_total_limit 3 \
|
290 |
+
--seed 0 \
|
291 |
+
--push_to_hub \
|
292 |
+
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1
|
293 |
+
|
294 |
+
|
295 |
+
# Task: question answering
|
296 |
+
cd ../question-answering
|
297 |
+
CUDA_VISIBLE_DEVICES=0 python run_qa.py \
|
298 |
+
--model_name_or_path google-bert/bert-base-uncased \
|
299 |
+
--dataset_name squad \
|
300 |
+
--do_train \
|
301 |
+
--do_eval \
|
302 |
+
--per_device_train_batch_size 12 \
|
303 |
+
--learning_rate 3e-5 \
|
304 |
+
--num_train_epochs 2 \
|
305 |
+
--max_seq_length 384 \
|
306 |
+
--doc_stride 128 \
|
307 |
+
--output_dir ./baseline \
|
308 |
+
--overwrite_output_dir \
|
309 |
+
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1
|
310 |
+
```
|
311 |
+
|
312 |
+
### Network Architecture Search
|
313 |
+
We conduct Neural Architecture Search (NAS) on the ResNet architecture using the ImageNet dataset. You can run the following command:
|
314 |
+
|
315 |
+
```train
|
316 |
+
cd neural-architecture-search
|
317 |
+
|
318 |
+
torchrun --nproc_per_node=4 train.py\
|
319 |
+
--data-path /path/to/imagenet/\
|
320 |
+
--model resnet18 --output-dir resnet18 --weights ResNet18_Weights.IMAGENET1K_V1\
|
321 |
+
--batch-size 64 --epochs 10 --lr 0.0004 --lr-step-size 2 --lr-gamma 0.5\
|
322 |
+
--lr-warmup-method constant --lr-warmup-epochs 1 --lr-warmup-decay 0. \
|
323 |
+
--apply-trp --trp-lambdas 0.1 0.01 --print-freq 100
|
324 |
+
```
|
325 |
+
|
326 |
+
## Evaluation
|
327 |
+
|
328 |
+
To evaluate our models on ImageNet, run:
|
329 |
+
|
330 |
+
```eval
|
331 |
+
|
332 |
+
cd image-classification
|
333 |
+
|
334 |
+
# Required: Download our MobileNet-V2 weights to /path/to/image-classification/mobilenet_v2
|
335 |
+
torchrun --nproc_per_node=4 train.py\
|
336 |
+
--data-path /path/to/imagenet/\
|
337 |
+
--model mobilenet_v2 --resume mobilenet_v2/model_32.pth --test-only
|
338 |
+
|
339 |
+
# Required: Download our ResNet-50 weights to /path/to/image-classification/resnet50
|
340 |
+
torchrun --nproc_per_node=4 train.py\
|
341 |
+
--data-path /path/to/imagenet/\
|
342 |
+
--model resnet50 --resume resnet50/model_35.pth --test-only
|
343 |
+
|
344 |
+
# Required: Download our EfficientNet-V2 M weights to /path/to/image-classification/efficientnet_v2_m
|
345 |
+
torchrun --nproc_per_node=4 train.py\
|
346 |
+
--data-path /path/to/imagenet/\
|
347 |
+
--model efficientnet_v2_m --resume efficientnet_v2_m/model_7.pth --test-only\
|
348 |
+
--val-crop-size 480 --val-resize-size 480
|
349 |
+
|
350 |
+
# Required: Download our ViT-B-16 weights to /path/to/image-classification/vit_b_16
|
351 |
+
torchrun --nproc_per_node=4 train.py\
|
352 |
+
--data-path /path/to/imagenet/\
|
353 |
+
--model vit_b_16 --resume vit_b_16/model_4.pth --test-only
|
354 |
+
```
|
355 |
+
|
356 |
+
To evaluate our models on COCO, run:
|
357 |
+
|
358 |
+
```eval
|
359 |
+
|
360 |
+
cd semantic-segmentation
|
361 |
+
|
362 |
+
# eval baselines
|
363 |
+
torchrun --nproc_per_node=4 train.py\
|
364 |
+
--workers 4 --dataset coco --data-path /path/to/coco/\
|
365 |
+
--model fcn_resnet50 --aux-loss --weights FCN_ResNet50_Weights.COCO_WITH_VOC_LABELS_V1\
|
366 |
+
--test-only
|
367 |
+
torchrun --nproc_per_node=4 train.py\
|
368 |
+
--workers 4 --dataset coco --data-path /path/to/coco/\
|
369 |
+
--model fcn_resnet101 --aux-loss --weights FCN_ResNet101_Weights.COCO_WITH_VOC_LABELS_V1\
|
370 |
+
--test-only
|
371 |
+
torchrun --nproc_per_node=4 train.py\
|
372 |
+
--workers 4 --dataset coco --data-path /path/to/coco/\
|
373 |
+
--model deeplabv3_resnet50 --aux-loss --weights DeepLabV3_ResNet50_Weights.COCO_WITH_VOC_LABELS_V1\
|
374 |
+
--test-only
|
375 |
+
torchrun --nproc_per_node=4 train.py\
|
376 |
+
--workers 4 --dataset coco --data-path /path/to/coco/\
|
377 |
+
--model deeplabv3_resnet101 --aux-loss --weights DeepLabV3_ResNet101_Weights.COCO_WITH_VOC_LABELS_V1\
|
378 |
+
--test-only
|
379 |
+
|
380 |
+
|
381 |
+
# eval our models
|
382 |
+
# Required: Download our FCN-ResNet50 weights to /path/to/semantic-segmentation/fcn_resnet50
|
383 |
+
torchrun --nproc_per_node=4 train.py\
|
384 |
+
--workers 4 --dataset coco --data-path /path/to/coco/\
|
385 |
+
--model fcn_resnet50 --aux-loss --resume fcn_resnet50/model_4.pth\
|
386 |
+
--test-only
|
387 |
+
|
388 |
+
# Required: Download our FCN-ResNet101 weights to /path/to/semantic-segmentation/fcn_resnet101
|
389 |
+
torchrun --nproc_per_node=4 train.py\
|
390 |
+
--workers 4 --dataset coco --data-path /path/to/coco/\
|
391 |
+
--model fcn_resnet101 --aux-loss --resume fcn_resnet101/model_4.pth\
|
392 |
+
--test-only
|
393 |
+
|
394 |
+
# Required: Download our DeepLabV3-ResNet50 weights to /path/to/semantic-segmentation/deeplabv3_resnet50
|
395 |
+
torchrun --nproc_per_node=4 train.py\
|
396 |
+
--workers 4 --dataset coco --data-path /path/to/coco/\
|
397 |
+
--model deeplabv3_resnet50 --aux-loss --resume deeplabv3_resnet50/model_4.pth\
|
398 |
+
--test-only
|
399 |
+
|
400 |
+
# Required: Download our DeepLabV3-ResNet101 weights to /path/to/semantic-segmentation/deeplabv3_resnet101
|
401 |
+
torchrun --nproc_per_node=4 train.py\
|
402 |
+
--workers 4 --dataset coco --data-path /path/to/coco/\
|
403 |
+
--model deeplabv3_resnet101 --aux-loss --weights DeepLabV3_ResNet101_Weights.COCO_WITH_VOC_LABELS_V1\
|
404 |
+
--test-only
|
405 |
+
```
|
406 |
+
|
407 |
+
To evaluate our models on GLUE, SquAD, and SUPERB, please re-run the `transfer learning` related commands we previously declared, as these commands are used not only for training but also for evaluation.
|
408 |
+
|
409 |
+
|
410 |
+
For Network Architecture Search, please run the following command to evaluate our SPG-trained ResNet-18 model:
|
411 |
+
```eval
|
412 |
+
|
413 |
+
cd neural-architecture-search
|
414 |
+
|
415 |
+
# Required: Download our ResNet-18 weights to /path/to/neural-architecture-search/resnet18
|
416 |
+
torchrun --nproc_per_node=4 train.py\
|
417 |
+
--data-path /path/to/imagenet/\
|
418 |
+
--model resnet18 --resume resnet18/model_8.pth --test-only
|
419 |
+
```
|
420 |
+
|
421 |
+
|
422 |
+
## License
|
423 |
+
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
424 |
+
|