Upload README.md
Browse files
README.md
CHANGED
@@ -1,60 +1,67 @@
|
|
1 |
# SPG: Sequential Policy Gradient for Adaptive Hyperparameter Optimization
|
2 |
|
3 |
|
4 |
-
## Model
|
5 |
-
We provide baseline models and SPG-trained models, all available for download at the following links:
|
6 |
|
7 |
|
8 |
-
`Table 1:
|
9 |
-
| Model | SPG | # Params | Acc@1 (%) | Acc@5 (%) | Weights |
|
10 |
-
|
11 |
-
| MobileNet-V2 | β | 3.5 M | 71.878 | 90.286 | <a href='https://download.pytorch.org/models/mobilenet_v2-b0353104.pth'><img src='https://img.shields.io/badge/PyTorch-IMAGENET1K_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> |
|
12 |
-
| MobileNet-V2 | β
| 3.5 M | 72.104 | 90.316 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/mobilenet_v2/model_32.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/mobilenet_v2-yellow'></a> |
|
13 |
-
| ResNet-50 | β | 25.6 M | 76.130 | 92.862 | <a href='https://download.pytorch.org/models/resnet50-0676ba61.pth'><img src='https://img.shields.io/badge/PyTorch-IMAGENET1K_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> |
|
14 |
| ResNet-50 | β
| 25.6 M | 77.234 | 93.322 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/resnet50/model_35.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/resnet50-yellow'></a> |
|
15 |
-
| EfficientNet-V2-M | β | 54.1 M | 85.112 | 97.156 | <a href='https://download.pytorch.org/models/efficientnet_v2_m-dc08266a.pth'><img src='https://img.shields.io/badge/PyTorch-IMAGENET1K_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> |
|
16 |
| EfficientNet-V2-M | β
| 54.1 M | 85.218 | 97.208 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/efficientnet_v2_m/model_7.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/efficientnet_v2_m-yellow'></a> |
|
17 |
-
| ViT-B16 | β | 86.6 M | 81.072 | 95.318 | <a href='https://download.pytorch.org/models/vit_b_16-c867db91.pth'><img src='https://img.shields.io/badge/PyTorch-IMAGENET1K_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> |
|
18 |
| ViT-B16 | β
| 86.6 M | 81.092 | 95.304 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/vit_b_16/model_4.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/vit_b_16-yellow'></a> |
|
19 |
|
20 |
|
21 |
-
`Table 2: All models are evaluated a subset of COCO val2017, on the 21 categories (including
|
22 |
-
"background") that are present in the Pascal VOC dataset.`
|
23 |
|
24 |
-
`
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
29 |
| FCN-ResNet50 | β
| 35.3 M | 59.4 | 90.9 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/fcn_resnet50/model_4.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/fcn_resnet50-yellow'></a> |
|
30 |
-
| FCN-ResNet101 | β | 54.3 M | 62.2 | 91.1 | <a href='https://download.pytorch.org/models/fcn_resnet101_coco-7ecb50ca.pth'><img src='https://img.shields.io/badge/PyTorch-COCO_WITH_VOC_LABELS_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> |
|
31 |
| FCN-ResNet101 | β
| 54.3 M | 62.4 | 91.1 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/fcn_resnet101/model_4.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/fcn_resnet101-yellow'></a> |
|
32 |
-
| DeepLabV3-ResNet50 | β | 42.0 M | 63.8 | 91.5 | <a href='https://download.pytorch.org/models/deeplabv3_resnet50_coco-cd0a2569.pth'><img src='https://img.shields.io/badge/PyTorch-COCO_WITH_VOC_LABELS_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> |
|
33 |
| DeepLabV3-ResNet50 | β
| 42.0 M | 64.2 | 91.6 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/deeplabv3_resnet50/model_4.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/deeplabv3_resnet50-yellow'></a> |
|
34 |
-
| DeepLabV3-ResNet101 | β | 61.0 M | 65.3 | 91.7 | <a href='https://download.pytorch.org/models/deeplabv3_resnet101_coco-586e9e4e.pth'><img src='https://img.shields.io/badge/PyTorch-COCO_WITH_VOC_LABELS_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> |
|
35 |
| DeepLabV3-ResNet101 | β
| 61.0 M | 65.7 | 91.8 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/deeplabv3_resnet101/model_4.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/deeplabv3_resnet101-yellow'></a> |
|
36 |
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
42 |
| CoLA | β
| Matthews coor | 62.13 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/cola'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/CoLA-yellow'></a> |
|
43 |
-
| SST-2 | β | Accuracy | 92.32 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-text_classification-yellow'></a> |
|
44 |
| SST-2 | β
| Accuracy | 92.54 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/sst2'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/SST2-yellow'></a> |
|
45 |
-
| MRPC | β | F1/Accuracy | 88.85/84.09 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-text_classification-yellow'></a> |
|
46 |
| MRPC | β
| F1/Accuracy | 91.10/87.25 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/mrpc'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/MRPC-yellow'></a> |
|
47 |
-
| QQP | β | F1/Accuracy | 87.49/90.71 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-text_classification-yellow'></a> |
|
48 |
| QQP | β
| F1/Accuracy | 89.72/90.88 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/qqp'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/QQP-yellow'></a> |
|
49 |
-
| QNLI | β | Accuracy | 90.66 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-text_classification-yellow'></a> |
|
50 |
| QNLI | β
| Accuracy | 91.10 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/qnli'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/QNLI-yellow'></a> |
|
51 |
-
| RTE | β | Accuracy | 65.70 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-text_classification-yellow'></a> |
|
52 |
| RTE | β
| Accuracy | 72.56 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/rte'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/RTE-yellow'></a> |
|
53 |
-
| Q/A* | β | F1/Extra match | 88.52/81.22 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-question_answering-yellow'></a> |
|
54 |
| Q/A* | β
| F1/Extra match | 88.67/81.51 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/qa'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/QA-yellow'></a> |
|
55 |
-
| ACβ | β | Accuracy | 98.26 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/audio-classification'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-audio_classification-yellow'></a> |
|
56 |
| ACβ | β
| Accuracy | 98.31 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/ac'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/AC-yellow'></a> |
|
57 |
|
|
|
|
|
|
|
58 |
## Requirements
|
59 |
|
60 |
1. Install `torch>=2.0.0+cu118`.
|
@@ -90,11 +97,12 @@ We provide baseline models and SPG-trained models, all available for download at
|
|
90 |
|
91 |
## Training
|
92 |
|
93 |
-
|
94 |
-
|
|
|
95 |
|
96 |
-
```
|
97 |
-
cd image-classification
|
98 |
|
99 |
# MobileNet-V2
|
100 |
torchrun --nproc_per_node=4 train.py\
|
@@ -129,10 +137,12 @@ torchrun --nproc_per_node=4 train.py\
|
|
129 |
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1 --print-freq 100
|
130 |
```
|
131 |
|
132 |
-
|
|
|
133 |
|
134 |
-
```
|
135 |
-
|
|
|
136 |
|
137 |
# FCN-ResNet50
|
138 |
torchrun --nproc_per_node=4 train.py\
|
@@ -166,100 +176,20 @@ torchrun --nproc_per_node=4 train.py\
|
|
166 |
--lr-warmup-method constant --lr-warmup-epochs 3 --lr-warmup-decay 0. \
|
167 |
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1
|
168 |
```
|
|
|
169 |
|
170 |
-
### Transfer learning
|
171 |
-
We
|
172 |
-
|
173 |
-
```train
|
174 |
-
cd text-classification
|
175 |
-
|
176 |
-
# Task: CoLA
|
177 |
-
CUDA_VISIBLE_DEVICES=0 python run_glue.py \
|
178 |
-
--model_name_or_path google-bert/bert-base-cased \
|
179 |
-
--task_name "cola" \
|
180 |
-
--do_train \
|
181 |
-
--do_eval \
|
182 |
-
--max_seq_length 128 \
|
183 |
-
--per_device_train_batch_size 32 \
|
184 |
-
--learning_rate 2.5e-5 \
|
185 |
-
--num_train_epochs 6 \
|
186 |
-
--output_dir "cola" \
|
187 |
-
--overwrite_output_dir \
|
188 |
-
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1
|
189 |
-
|
190 |
-
# Task: SST-2
|
191 |
-
CUDA_VISIBLE_DEVICES=0 python run_glue.py \
|
192 |
-
--model_name_or_path google-bert/bert-base-cased \
|
193 |
-
--task_name "sst2" \
|
194 |
-
--do_train \
|
195 |
-
--do_eval \
|
196 |
-
--max_seq_length 128 \
|
197 |
-
--per_device_train_batch_size 64 \
|
198 |
-
--learning_rate 3e-5 \
|
199 |
-
--num_train_epochs 5 \
|
200 |
-
--output_dir "sst2" \
|
201 |
-
--overwrite_output_dir \
|
202 |
-
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1
|
203 |
-
|
204 |
-
# Task: MRPC
|
205 |
-
CUDA_VISIBLE_DEVICES=0 python run_glue.py \
|
206 |
-
--model_name_or_path google-bert/bert-base-cased \
|
207 |
-
--task_name "mrpc" \
|
208 |
-
--do_train \
|
209 |
-
--do_eval \
|
210 |
-
--max_seq_length 128 \
|
211 |
-
--per_device_train_batch_size 16 \
|
212 |
-
--learning_rate 2e-5 \
|
213 |
-
--num_train_epochs 4 \
|
214 |
-
--output_dir "mrpc" \
|
215 |
-
--overwrite_output_dir \
|
216 |
-
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1
|
217 |
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
--task_name "qqp" \
|
222 |
-
--do_train \
|
223 |
-
--do_eval \
|
224 |
-
--max_seq_length 128 \
|
225 |
-
--per_device_train_batch_size 32 \
|
226 |
-
--learning_rate 1e-5 \
|
227 |
-
--num_train_epochs 10 \
|
228 |
-
--output_dir "qqp" \
|
229 |
-
--overwrite_output_dir \
|
230 |
-
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1
|
231 |
-
|
232 |
-
# Task: QNLI
|
233 |
-
CUDA_VISIBLE_DEVICES=0 python run_glue.py \
|
234 |
-
--model_name_or_path google-bert/bert-base-cased \
|
235 |
-
--task_name "qnli" \
|
236 |
-
--do_train \
|
237 |
-
--do_eval \
|
238 |
-
--max_seq_length 128 \
|
239 |
-
--per_device_train_batch_size 32 \
|
240 |
-
--learning_rate 2e-5 \
|
241 |
-
--num_train_epochs 10 \
|
242 |
-
--output_dir "qnli" \
|
243 |
-
--overwrite_output_dir \
|
244 |
-
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1
|
245 |
|
246 |
-
|
247 |
-
|
248 |
-
--model_name_or_path google-bert/bert-base-cased \
|
249 |
-
--task_name "rte" \
|
250 |
-
--do_train \
|
251 |
-
--do_eval \
|
252 |
-
--max_seq_length 128 \
|
253 |
-
--per_device_train_batch_size 32 \
|
254 |
-
--learning_rate 5e-5 \
|
255 |
-
--num_train_epochs 5 \
|
256 |
-
--output_dir "rte" \
|
257 |
-
--overwrite_output_dir \
|
258 |
-
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1
|
259 |
-
|
260 |
|
261 |
-
|
262 |
-
cd
|
263 |
CUDA_VISIBLE_DEVICES=0 python run_audio_classification.py \
|
264 |
--model_name_or_path facebook/wav2vec2-base \
|
265 |
--dataset_name superb \
|
@@ -290,10 +220,14 @@ CUDA_VISIBLE_DEVICES=0 python run_audio_classification.py \
|
|
290 |
--seed 0 \
|
291 |
--push_to_hub \
|
292 |
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1
|
|
|
293 |
|
294 |
|
295 |
-
|
296 |
-
|
|
|
|
|
|
|
297 |
CUDA_VISIBLE_DEVICES=0 python run_qa.py \
|
298 |
--model_name_or_path google-bert/bert-base-uncased \
|
299 |
--dataset_name squad \
|
@@ -309,12 +243,13 @@ CUDA_VISIBLE_DEVICES=0 python run_qa.py \
|
|
309 |
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1
|
310 |
```
|
311 |
|
312 |
-
###
|
313 |
-
We conduct Neural Architecture Search (NAS)
|
314 |
|
315 |
-
```
|
316 |
-
cd
|
317 |
|
|
|
318 |
torchrun --nproc_per_node=4 train.py\
|
319 |
--data-path /home/cs/Documents/datasets/imagenet\
|
320 |
--model resnet18 --output-dir resnet18 --weights ResNet18_Weights.IMAGENET1K_V1\
|
@@ -322,7 +257,7 @@ torchrun --nproc_per_node=4 train.py\
|
|
322 |
--lr-warmup-method constant --lr-warmup-epochs 1 --lr-warmup-decay 0.\
|
323 |
--apply-trp --trp-depths 3 3 3 --trp-planes 256 --trp-lambdas 0.4 0.2 0.1 --print-freq 100
|
324 |
|
325 |
-
#
|
326 |
torchrun --nproc_per_node=4 train.py\
|
327 |
--data-path /home/cs/Documents/datasets/imagenet\
|
328 |
--model resnet34 --output-dir resnet34 --weights ResNet34_Weights.IMAGENET1K_V1\
|
@@ -330,8 +265,7 @@ torchrun --nproc_per_node=4 train.py\
|
|
330 |
--lr-warmup-method constant --lr-warmup-epochs 1 --lr-warmup-decay 0.\
|
331 |
--apply-trp --trp-depths 2 2 2 --trp-planes 256 --trp-lambdas 0.4 0.2 0.1 --print-freq 100
|
332 |
|
333 |
-
|
334 |
-
# β
Test: Acc@1 76.896 Acc@5 93.136
|
335 |
torchrun --nproc_per_node=4 train.py\
|
336 |
--data-path /home/cs/Documents/datasets/imagenet\
|
337 |
--model resnet50 --output-dir resnet50 --weights ResNet50_Weights.IMAGENET1K_V1\
|
@@ -344,7 +278,7 @@ torchrun --nproc_per_node=4 train.py\
|
|
344 |
|
345 |
To evaluate our models on ImageNet, run:
|
346 |
|
347 |
-
```
|
348 |
|
349 |
cd image-classification
|
350 |
|
@@ -372,9 +306,9 @@ torchrun --nproc_per_node=4 train.py\
|
|
372 |
|
373 |
To evaluate our models on COCO, run:
|
374 |
|
375 |
-
```
|
376 |
|
377 |
-
cd semantic-segmentation
|
378 |
|
379 |
# eval baselines
|
380 |
torchrun --nproc_per_node=4 train.py\
|
@@ -425,9 +359,9 @@ To evaluate our models on GLUE, SquAD, and SUPERB, please re-run the `transfer l
|
|
425 |
|
426 |
|
427 |
For Network Architecture Search, please run the following command to evaluate our SPG-trained ResNet-18 model:
|
428 |
-
```
|
429 |
|
430 |
-
cd neural-architecture-search
|
431 |
|
432 |
# Required: Download our ResNet-18 weights to /path/to/neural-architecture-search/resnet18
|
433 |
torchrun --nproc_per_node=4 train.py\
|
|
|
1 |
# SPG: Sequential Policy Gradient for Adaptive Hyperparameter Optimization
|
2 |
|
3 |
|
4 |
+
## Model Zoo: Adaptive Hyperparameter Optimization (HPO) via SPG Algorithm
|
|
|
5 |
|
6 |
|
7 |
+
`Table 1: Performance of pre-trained vs. SPG-retrained models on ImageNet-1K`
|
8 |
+
| Model | SPG | # Params | Acc@1 (%) | Acc@5 (%) | Weights | Command to reproduce |
|
9 |
+
|-------|------|----------|-----------|-----------|---------|----------------------|
|
10 |
+
| MobileNet-V2 | β | 3.5 M | 71.878 | 90.286 | <a href='https://download.pytorch.org/models/mobilenet_v2-b0353104.pth'><img src='https://img.shields.io/badge/PyTorch-IMAGENET1K_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> | <a href='https://github.com/pytorch/vision/tree/main/references/classification#mobilenetv2'>Recipe</a> |
|
11 |
+
| MobileNet-V2 | β
| 3.5 M | 72.104 | 90.316 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/mobilenet_v2/model_32.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/mobilenet_v2-yellow'></a> | [examples/image-classification/run.sh](#-Retrain-model-on-ImageNet-1K) |
|
12 |
+
| ResNet-50 | β | 25.6 M | 76.130 | 92.862 | <a href='https://download.pytorch.org/models/resnet50-0676ba61.pth'><img src='https://img.shields.io/badge/PyTorch-IMAGENET1K_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> | <a href='https://github.com/pytorch/vision/tree/main/references/classification#resnet'>Recipe</a> |
|
13 |
| ResNet-50 | β
| 25.6 M | 77.234 | 93.322 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/resnet50/model_35.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/resnet50-yellow'></a> |
|
14 |
+
| EfficientNet-V2-M | β | 54.1 M | 85.112 | 97.156 | <a href='https://download.pytorch.org/models/efficientnet_v2_m-dc08266a.pth'><img src='https://img.shields.io/badge/PyTorch-IMAGENET1K_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> | <a href='https://github.com/pytorch/vision/tree/main/references/classification#efficientnet-v2'>Recipe</a> |
|
15 |
| EfficientNet-V2-M | β
| 54.1 M | 85.218 | 97.208 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/efficientnet_v2_m/model_7.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/efficientnet_v2_m-yellow'></a> |
|
16 |
+
| ViT-B16 | β | 86.6 M | 81.072 | 95.318 | <a href='https://download.pytorch.org/models/vit_b_16-c867db91.pth'><img src='https://img.shields.io/badge/PyTorch-IMAGENET1K_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> | <a href='https://github.com/pytorch/vision/tree/main/references/classification#vit_b_16'>Recipe</a> |
|
17 |
| ViT-B16 | β
| 86.6 M | 81.092 | 95.304 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/vit_b_16/model_4.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/vit_b_16-yellow'></a> |
|
18 |
|
19 |
|
|
|
|
|
20 |
|
21 |
+
`Table 2: Performance of pre-trained vs. SPG-retrained models. All models are evaluated a subset of COCO val2017, on the 21 categories (including "background") that are present in the Pascal VOC dataset.`
|
22 |
|
23 |
+
β οΈ`All model reported on TorchVision (with weight COCO_WITH_VOC_LABELS_V1) were benchmarked using only 20 categories. Researchers should first download the pre-trained model from TorchVision and conduct re-evaluation under the 21-category framework.`
|
24 |
+
|
25 |
+
| Model | SPG | # Params | mIoU (%) | pixelwise Acc (%) | Weights | Command to reproduce |
|
26 |
+
|---------------------|-----|----------|------------|---------------------|---------|----------------------|
|
27 |
+
| FCN-ResNet50 | β | 35.3 M | 58.9 | 90.9 | <a href='https://download.pytorch.org/models/fcn_resnet50_coco-1167a1af.pth'><img src='https://img.shields.io/badge/PyTorch-COCO_WITH_VOC_LABELS_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> | <a href='https://github.com/pytorch/vision/tree/main/references/segmentation#fcn_resnet50'>Recipe</a> |
|
28 |
| FCN-ResNet50 | β
| 35.3 M | 59.4 | 90.9 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/fcn_resnet50/model_4.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/fcn_resnet50-yellow'></a> |
|
29 |
+
| FCN-ResNet101 | β | 54.3 M | 62.2 | 91.1 | <a href='https://download.pytorch.org/models/fcn_resnet101_coco-7ecb50ca.pth'><img src='https://img.shields.io/badge/PyTorch-COCO_WITH_VOC_LABELS_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> | <a href='https://github.com/pytorch/vision/tree/main/references/segmentation#deeplabv3_resnet101'>Recipe</a> |
|
30 |
| FCN-ResNet101 | β
| 54.3 M | 62.4 | 91.1 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/fcn_resnet101/model_4.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/fcn_resnet101-yellow'></a> |
|
31 |
+
| DeepLabV3-ResNet50 | β | 42.0 M | 63.8 | 91.5 | <a href='https://download.pytorch.org/models/deeplabv3_resnet50_coco-cd0a2569.pth'><img src='https://img.shields.io/badge/PyTorch-COCO_WITH_VOC_LABELS_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> | <a href='https://github.com/pytorch/vision/tree/main/references/segmentation#deeplabv3_resnet50'>Recipe</a> |
|
32 |
| DeepLabV3-ResNet50 | β
| 42.0 M | 64.2 | 91.6 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/deeplabv3_resnet50/model_4.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/deeplabv3_resnet50-yellow'></a> |
|
33 |
+
| DeepLabV3-ResNet101 | β | 61.0 M | 65.3 | 91.7 | <a href='https://download.pytorch.org/models/deeplabv3_resnet101_coco-586e9e4e.pth'><img src='https://img.shields.io/badge/PyTorch-COCO_WITH_VOC_LABELS_V1-FFA500?style=flat&logo=pytorch&logoColor=orange&labelColor=00000000'></a> | <a href='https://github.com/pytorch/vision/tree/main/references/segmentation#deeplabv3_resnet101'>Recipe</a> |
|
34 |
| DeepLabV3-ResNet101 | β
| 61.0 M | 65.7 | 91.8 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/resolve/main/deeplabv3_resnet101/model_4.pth'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/deeplabv3_resnet101-yellow'></a> |
|
35 |
|
36 |
|
37 |
+
|
38 |
+
`Table X: Performance comparison of fine-tuned vs. SPG-retrained models across NLP and speech benchmarks.`
|
39 |
+
- GLUE (Text classification: BERT on CoLA, SST-2, MRPC, QQP, QNLI, and RTE task)
|
40 |
+
- SQuAD (Question answering: BERT)
|
41 |
+
- SUPERB (Speech classification: Wav2Vec2 for Audio Classification (AC))
|
42 |
+
|
43 |
+
| Task | SPG | Metric Type | Performance (%) | Weights | Command to reproduce |
|
44 |
+
|-------|------|-------------------|-----------------|---------|----------------------|
|
45 |
+
| CoLA | β | Matthews coor | 56.53 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-text_classification-yellow'></a> | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification#glue-tasks'>Recipe</a> |
|
46 |
| CoLA | β
| Matthews coor | 62.13 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/cola'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/CoLA-yellow'></a> |
|
47 |
+
| SST-2 | β | Accuracy | 92.32 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-text_classification-yellow'></a> | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification#glue-tasks'>Recipe</a> |
|
48 |
| SST-2 | β
| Accuracy | 92.54 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/sst2'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/SST2-yellow'></a> |
|
49 |
+
| MRPC | β | F1/Accuracy | 88.85/84.09 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-text_classification-yellow'></a> | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification#glue-tasks'>Recipe</a> |
|
50 |
| MRPC | β
| F1/Accuracy | 91.10/87.25 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/mrpc'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/MRPC-yellow'></a> |
|
51 |
+
| QQP | β | F1/Accuracy | 87.49/90.71 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-text_classification-yellow'></a> | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification#glue-tasks'>Recipe</a> |
|
52 |
| QQP | β
| F1/Accuracy | 89.72/90.88 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/qqp'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/QQP-yellow'></a> |
|
53 |
+
| QNLI | β | Accuracy | 90.66 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-text_classification-yellow'></a> | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification#glue-tasks'>Recipe</a> |
|
54 |
| QNLI | β
| Accuracy | 91.10 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/qnli'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/QNLI-yellow'></a> |
|
55 |
+
| RTE | β | Accuracy | 65.70 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-text_classification-yellow'></a> | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification#glue-tasks'>Recipe</a> |
|
56 |
| RTE | β
| Accuracy | 72.56 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/rte'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/RTE-yellow'></a> |
|
57 |
+
| Q/A* | β | F1/Extra match | 88.52/81.22 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-question_answering-yellow'></a> | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering#fine-tuning-bert-on-squad10'>Recipe</a> |
|
58 |
| Q/A* | β
| F1/Extra match | 88.67/81.51 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/qa'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/QA-yellow'></a> |
|
59 |
+
| ACβ | β | Accuracy | 98.26 | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/audio-classification'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-audio_classification-yellow'></a> | <a href='https://github.com/huggingface/transformers/tree/main/examples/pytorch/audio-classification#single-gpu'>Recipe</a> |
|
60 |
| ACβ | β
| Accuracy | 98.31 | <a href='https://huggingface.co/UniversalAlgorithmic/SPG/tree/main/ac'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Huggingface-SPG/AC-yellow'></a> |
|
61 |
|
62 |
+
|
63 |
+
## Model Zoo: Neural Architecture Search (NAS) via SPG Algorithm
|
64 |
+
|
65 |
## Requirements
|
66 |
|
67 |
1. Install `torch>=2.0.0+cu118`.
|
|
|
97 |
|
98 |
## Training
|
99 |
|
100 |
+
<a id="#-Retrain-model-on-ImageNet-1K"></a>
|
101 |
+
### Retrain model on ImageNet-1K
|
102 |
+
We use training recipes similar to those in [PyTorch Vision's classification reference](https://github.com/pytorch/vision/blob/main/references/classification/README.md) to retrain MobileNet-V2, ResNet, EfficientNet-V2, and ViT with our SPG on ImageNet-1K. The following command can be used:
|
103 |
|
104 |
+
```bash
|
105 |
+
cd ./examples/image-classification
|
106 |
|
107 |
# MobileNet-V2
|
108 |
torchrun --nproc_per_node=4 train.py\
|
|
|
137 |
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1 --print-freq 100
|
138 |
```
|
139 |
|
140 |
+
### Retrain model on MS-COCO 2017
|
141 |
+
We use training recipes similar to those in [PyTorch Vision's segmentation reference](https://github.com/pytorch/vision/blob/main/references/segmentation/README.md) to retrain FCN and DeepLab-V3 with our SPG on COCO dataset. The following command can be used:
|
142 |
|
143 |
+
```bash
|
144 |
+
|
145 |
+
cd ./examples/semantic-segmentation
|
146 |
|
147 |
# FCN-ResNet50
|
148 |
torchrun --nproc_per_node=4 train.py\
|
|
|
176 |
--lr-warmup-method constant --lr-warmup-epochs 3 --lr-warmup-decay 0. \
|
177 |
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1
|
178 |
```
|
179 |
+
</details>
|
180 |
|
181 |
+
### Transfer learning on GLUE
|
182 |
+
We use recipes similar to those in [HuggingFace Transformers' Examples](https://github.com/huggingface/transformers/blob/main/examples/pytorch/README.md) to retrain BERT with our SPG on GLUE benchmark. The following command can be used:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
+
```bash
|
185 |
+
cd ./examples/text-classification && bash run.sh
|
186 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
+
### Transfer learning on SQuAD
|
189 |
+
We use recipes similar to those in [HuggingFace Transformers' Examples](https://github.com/huggingface/transformers/blob/main/examples/pytorch/README.md) to retrain Wav2Vec with our SPG on SQuAD dataset. The following command can be used:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
+
```bash
|
192 |
+
cd ./examples/audio-classification
|
193 |
CUDA_VISIBLE_DEVICES=0 python run_audio_classification.py \
|
194 |
--model_name_or_path facebook/wav2vec2-base \
|
195 |
--dataset_name superb \
|
|
|
220 |
--seed 0 \
|
221 |
--push_to_hub \
|
222 |
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1
|
223 |
+
```
|
224 |
|
225 |
|
226 |
+
### Transfer learning on SUPERB
|
227 |
+
We use recipes similar to those in [HuggingFace Transformers' Examples](https://github.com/huggingface/transformers/blob/main/examples/pytorch/README.md) to retrain BERT with our SPG on SUPERB benchmark. The following command can be used:
|
228 |
+
|
229 |
+
```bash
|
230 |
+
cd ./examples/question-answering
|
231 |
CUDA_VISIBLE_DEVICES=0 python run_qa.py \
|
232 |
--model_name_or_path google-bert/bert-base-uncased \
|
233 |
--dataset_name squad \
|
|
|
243 |
--apply-trp --trp-depths 1 --trp-p 0.1 --trp-lambdas 0.4 0.2 0.1
|
244 |
```
|
245 |
|
246 |
+
### Neural Architecture Search for ResNet on ImageNet-1K
|
247 |
+
We conduct Neural Architecture Search (NAS) for the ResNet architecture on the ImageNet dataset. The following command can be used:
|
248 |
|
249 |
+
```bash
|
250 |
+
cd ./examples/neural-architecture-search
|
251 |
|
252 |
+
# During Neural Architecture Search (NAS), we explore ResNet-18, ResNet-27, ResNet-36, and ResNet-45. After retraining with SPG algorithm, we retain only ResNet-18 and discard the others.
|
253 |
torchrun --nproc_per_node=4 train.py\
|
254 |
--data-path /home/cs/Documents/datasets/imagenet\
|
255 |
--model resnet18 --output-dir resnet18 --weights ResNet18_Weights.IMAGENET1K_V1\
|
|
|
257 |
--lr-warmup-method constant --lr-warmup-epochs 1 --lr-warmup-decay 0.\
|
258 |
--apply-trp --trp-depths 3 3 3 --trp-planes 256 --trp-lambdas 0.4 0.2 0.1 --print-freq 100
|
259 |
|
260 |
+
# During Neural Architecture Search (NAS), we explore ResNet-34, ResNet-40, ResNet-46, and ResNet-52. After retraining with SPG algorithm, we retain only ResNet-34 and discard the others.
|
261 |
torchrun --nproc_per_node=4 train.py\
|
262 |
--data-path /home/cs/Documents/datasets/imagenet\
|
263 |
--model resnet34 --output-dir resnet34 --weights ResNet34_Weights.IMAGENET1K_V1\
|
|
|
265 |
--lr-warmup-method constant --lr-warmup-epochs 1 --lr-warmup-decay 0.\
|
266 |
--apply-trp --trp-depths 2 2 2 --trp-planes 256 --trp-lambdas 0.4 0.2 0.1 --print-freq 100
|
267 |
|
268 |
+
# During Neural Architecture Search (NAS), we explore ResNet-34, ResNet-50, ResNet-53, and ResNet-56. After retraining with SPG algorithm, we retain only ResNet-50 and discard the others.
|
|
|
269 |
torchrun --nproc_per_node=4 train.py\
|
270 |
--data-path /home/cs/Documents/datasets/imagenet\
|
271 |
--model resnet50 --output-dir resnet50 --weights ResNet50_Weights.IMAGENET1K_V1\
|
|
|
278 |
|
279 |
To evaluate our models on ImageNet, run:
|
280 |
|
281 |
+
```bash
|
282 |
|
283 |
cd image-classification
|
284 |
|
|
|
306 |
|
307 |
To evaluate our models on COCO, run:
|
308 |
|
309 |
+
```bash
|
310 |
|
311 |
+
cd ./examples/semantic-segmentation
|
312 |
|
313 |
# eval baselines
|
314 |
torchrun --nproc_per_node=4 train.py\
|
|
|
359 |
|
360 |
|
361 |
For Network Architecture Search, please run the following command to evaluate our SPG-trained ResNet-18 model:
|
362 |
+
```bash
|
363 |
|
364 |
+
cd ./examples/neural-architecture-search
|
365 |
|
366 |
# Required: Download our ResNet-18 weights to /path/to/neural-architecture-search/resnet18
|
367 |
torchrun --nproc_per_node=4 train.py\
|