Delete examples/audio-classification/README.md
Browse files
examples/audio-classification/README.md
DELETED
@@ -1,148 +0,0 @@
|
|
1 |
-
<!---
|
2 |
-
Copyright 2021 The HuggingFace Team. All rights reserved.
|
3 |
-
|
4 |
-
Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
you may not use this file except in compliance with the License.
|
6 |
-
You may obtain a copy of the License at
|
7 |
-
|
8 |
-
http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
|
10 |
-
Unless required by applicable law or agreed to in writing, software
|
11 |
-
distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
See the License for the specific language governing permissions and
|
14 |
-
limitations under the License.
|
15 |
-
-->
|
16 |
-
|
17 |
-
# Audio classification examples
|
18 |
-
|
19 |
-
The following examples showcase how to fine-tune `Wav2Vec2` for audio classification using PyTorch.
|
20 |
-
|
21 |
-
Speech recognition models that have been pretrained in unsupervised fashion on audio data alone,
|
22 |
-
*e.g.* [Wav2Vec2](https://huggingface.co/transformers/main/model_doc/wav2vec2.html),
|
23 |
-
[HuBERT](https://huggingface.co/transformers/main/model_doc/hubert.html),
|
24 |
-
[XLSR-Wav2Vec2](https://huggingface.co/transformers/main/model_doc/xlsr_wav2vec2.html), have shown to require only
|
25 |
-
very little annotated data to yield good performance on speech classification datasets.
|
26 |
-
|
27 |
-
## Single-GPU
|
28 |
-
|
29 |
-
The following command shows how to fine-tune [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the 🗣️ [Keyword Spotting subset](https://huggingface.co/datasets/superb#ks) of the SUPERB dataset.
|
30 |
-
|
31 |
-
```bash
|
32 |
-
python run_audio_classification.py \
|
33 |
-
--model_name_or_path facebook/wav2vec2-base \
|
34 |
-
--dataset_name superb \
|
35 |
-
--dataset_config_name ks \
|
36 |
-
--output_dir wav2vec2-base-ft-keyword-spotting \
|
37 |
-
--overwrite_output_dir \
|
38 |
-
--remove_unused_columns False \
|
39 |
-
--do_train \
|
40 |
-
--do_eval \
|
41 |
-
--fp16 \
|
42 |
-
--learning_rate 3e-5 \
|
43 |
-
--max_length_seconds 1 \
|
44 |
-
--attention_mask False \
|
45 |
-
--warmup_ratio 0.1 \
|
46 |
-
--num_train_epochs 5 \
|
47 |
-
--per_device_train_batch_size 32 \
|
48 |
-
--gradient_accumulation_steps 4 \
|
49 |
-
--per_device_eval_batch_size 32 \
|
50 |
-
--dataloader_num_workers 4 \
|
51 |
-
--logging_strategy steps \
|
52 |
-
--logging_steps 10 \
|
53 |
-
--eval_strategy epoch \
|
54 |
-
--save_strategy epoch \
|
55 |
-
--load_best_model_at_end True \
|
56 |
-
--metric_for_best_model accuracy \
|
57 |
-
--save_total_limit 3 \
|
58 |
-
--seed 0 \
|
59 |
-
--push_to_hub
|
60 |
-
```
|
61 |
-
|
62 |
-
On a single V100 GPU (16GB), this script should run in ~14 minutes and yield accuracy of **98.26%**.
|
63 |
-
|
64 |
-
👀 See the results here: [anton-l/wav2vec2-base-ft-keyword-spotting](https://huggingface.co/anton-l/wav2vec2-base-ft-keyword-spotting)
|
65 |
-
|
66 |
-
> If your model classification head dimensions do not fit the number of labels in the dataset, you can specify `--ignore_mismatched_sizes` to adapt it.
|
67 |
-
|
68 |
-
## Multi-GPU
|
69 |
-
|
70 |
-
The following command shows how to fine-tune [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) for 🌎 **Language Identification** on the [CommonLanguage dataset](https://huggingface.co/datasets/anton-l/common_language).
|
71 |
-
|
72 |
-
```bash
|
73 |
-
python run_audio_classification.py \
|
74 |
-
--model_name_or_path facebook/wav2vec2-base \
|
75 |
-
--dataset_name common_language \
|
76 |
-
--audio_column_name audio \
|
77 |
-
--label_column_name language \
|
78 |
-
--output_dir wav2vec2-base-lang-id \
|
79 |
-
--overwrite_output_dir \
|
80 |
-
--remove_unused_columns False \
|
81 |
-
--do_train \
|
82 |
-
--do_eval \
|
83 |
-
--fp16 \
|
84 |
-
--learning_rate 3e-4 \
|
85 |
-
--max_length_seconds 16 \
|
86 |
-
--attention_mask False \
|
87 |
-
--warmup_ratio 0.1 \
|
88 |
-
--num_train_epochs 10 \
|
89 |
-
--per_device_train_batch_size 8 \
|
90 |
-
--gradient_accumulation_steps 4 \
|
91 |
-
--per_device_eval_batch_size 1 \
|
92 |
-
--dataloader_num_workers 8 \
|
93 |
-
--logging_strategy steps \
|
94 |
-
--logging_steps 10 \
|
95 |
-
--eval_strategy epoch \
|
96 |
-
--save_strategy epoch \
|
97 |
-
--load_best_model_at_end True \
|
98 |
-
--metric_for_best_model accuracy \
|
99 |
-
--save_total_limit 3 \
|
100 |
-
--seed 0 \
|
101 |
-
--push_to_hub
|
102 |
-
```
|
103 |
-
|
104 |
-
On 4 V100 GPUs (16GB), this script should run in ~1 hour and yield accuracy of **79.45%**.
|
105 |
-
|
106 |
-
👀 See the results here: [anton-l/wav2vec2-base-lang-id](https://huggingface.co/anton-l/wav2vec2-base-lang-id)
|
107 |
-
|
108 |
-
## Sharing your model on 🤗 Hub
|
109 |
-
|
110 |
-
0. If you haven't already, [sign up](https://huggingface.co/join) for a 🤗 account
|
111 |
-
|
112 |
-
1. Make sure you have `git-lfs` installed and git set up.
|
113 |
-
|
114 |
-
```bash
|
115 |
-
$ apt install git-lfs
|
116 |
-
```
|
117 |
-
|
118 |
-
2. Log in with your HuggingFace account credentials using `huggingface-cli`
|
119 |
-
|
120 |
-
```bash
|
121 |
-
$ huggingface-cli login
|
122 |
-
# ...follow the prompts
|
123 |
-
```
|
124 |
-
|
125 |
-
3. When running the script, pass the following arguments:
|
126 |
-
|
127 |
-
```bash
|
128 |
-
python run_audio_classification.py \
|
129 |
-
--push_to_hub \
|
130 |
-
--hub_model_id <username/model_id> \
|
131 |
-
...
|
132 |
-
```
|
133 |
-
|
134 |
-
### Examples
|
135 |
-
|
136 |
-
The following table shows a couple of demonstration fine-tuning runs.
|
137 |
-
It has been verified that the script works for the following datasets:
|
138 |
-
|
139 |
-
- [SUPERB Keyword Spotting](https://huggingface.co/datasets/superb#ks)
|
140 |
-
- [Common Language](https://huggingface.co/datasets/common_language)
|
141 |
-
|
142 |
-
| Dataset | Pretrained Model | # transformer layers | Accuracy on eval | GPU setup | Training time | Fine-tuned Model & Logs |
|
143 |
-
|---------|------------------|----------------------|------------------|-----------|---------------|--------------------------|
|
144 |
-
| Keyword Spotting | [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) | 2 | 0.9706 | 1 V100 GPU | 11min | [here](https://huggingface.co/anton-l/distilhubert-ft-keyword-spotting) |
|
145 |
-
| Keyword Spotting | [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) | 12 | 0.9826 | 1 V100 GPU | 14min | [here](https://huggingface.co/anton-l/wav2vec2-base-ft-keyword-spotting) |
|
146 |
-
| Keyword Spotting | [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) | 12 | 0.9819 | 1 V100 GPU | 14min | [here](https://huggingface.co/anton-l/hubert-base-ft-keyword-spotting) |
|
147 |
-
| Keyword Spotting | [asapp/sew-mid-100k](https://huggingface.co/asapp/sew-mid-100k) | 24 | 0.9757 | 1 V100 GPU | 15min | [here](https://huggingface.co/anton-l/sew-mid-100k-ft-keyword-spotting) |
|
148 |
-
| Common Language | [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) | 12 | 0.7945 | 4 V100 GPUs | 1h10m | [here](https://huggingface.co/anton-l/wav2vec2-base-lang-id) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|