File size: 185,600 Bytes
b04de69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "X4cRE8IbIrIV"
},
"source": [
"Downloading PyTorch Vision Reference Scripts for Image Classification. These scripts are official reference implementations from PyTorch Vision that provide training and quantization utilities for image classification models."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "46CgrVgjg3E-",
"outputId": "7fb20ebe-d7fd-43fa-dc9b-ebbedf31575e"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"--2025-05-22 07:47:03-- https://raw.githubusercontent.com/pytorch/vision/main/references/classification/presets.py\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.110.133, 185.199.111.133, 185.199.109.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.110.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 3885 (3.8K) [text/plain]\n",
"Saving to: ‘presets.py.1’\n",
"\n",
"presets.py.1 100%[===================>] 3.79K --.-KB/s in 0s \n",
"\n",
"2025-05-22 07:47:03 (24.3 MB/s) - ‘presets.py.1’ saved [3885/3885]\n",
"\n",
"--2025-05-22 07:47:04-- https://raw.githubusercontent.com/pytorch/vision/main/references/classification/sampler.py\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.109.133, 185.199.111.133, 185.199.110.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.109.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 2395 (2.3K) [text/plain]\n",
"Saving to: ‘sampler.py.1’\n",
"\n",
"sampler.py.1 100%[===================>] 2.34K --.-KB/s in 0s \n",
"\n",
"2025-05-22 07:47:04 (12.1 MB/s) - ‘sampler.py.1’ saved [2395/2395]\n",
"\n",
"--2025-05-22 07:47:04-- https://raw.githubusercontent.com/pytorch/vision/main/references/classification/train.py\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.110.133, 185.199.108.133, 185.199.111.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.110.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 23324 (23K) [text/plain]\n",
"Saving to: ‘train.py.1’\n",
"\n",
"train.py.1 100%[===================>] 22.78K --.-KB/s in 0.007s \n",
"\n",
"2025-05-22 07:47:04 (3.30 MB/s) - ‘train.py.1’ saved [23324/23324]\n",
"\n",
"--2025-05-22 07:47:04-- https://raw.githubusercontent.com/pytorch/vision/main/references/classification/train_quantization.py\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.111.133, 185.199.109.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 11647 (11K) [text/plain]\n",
"Saving to: ‘train_quantization.py.1’\n",
"\n",
"train_quantization. 100%[===================>] 11.37K --.-KB/s in 0.002s \n",
"\n",
"2025-05-22 07:47:04 (6.26 MB/s) - ‘train_quantization.py.1’ saved [11647/11647]\n",
"\n",
"--2025-05-22 07:47:04-- https://raw.githubusercontent.com/pytorch/vision/main/references/classification/transformers.py\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.110.133, 185.199.111.133, 185.199.108.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.110.133|:443... connected.\n",
"HTTP request sent, awaiting response... 404 Not Found\n",
"2025-05-22 07:47:05 ERROR 404: Not Found.\n",
"\n",
"--2025-05-22 07:47:05-- https://raw.githubusercontent.com/pytorch/vision/main/references/classification/utils.py\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.109.133, 185.199.108.133, 185.199.110.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.109.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 15791 (15K) [text/plain]\n",
"Saving to: ‘utils.py.1’\n",
"\n",
"utils.py.1 100%[===================>] 15.42K --.-KB/s in 0.005s \n",
"\n",
"2025-05-22 07:47:05 (3.21 MB/s) - ‘utils.py.1’ saved [15791/15791]\n",
"\n"
]
}
],
"source": [
"! wget https://raw.githubusercontent.com/pytorch/vision/main/references/classification/presets.py\n",
"! wget https://raw.githubusercontent.com/pytorch/vision/main/references/classification/sampler.py\n",
"! wget https://raw.githubusercontent.com/pytorch/vision/main/references/classification/train.py\n",
"! wget https://raw.githubusercontent.com/pytorch/vision/main/references/classification/train_quantization.py\n",
"! wget https://raw.githubusercontent.com/pytorch/vision/main/references/classification/transformers.py\n",
"! wget https://raw.githubusercontent.com/pytorch/vision/main/references/classification/utils.py"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "HFASsisvIrIb"
},
"source": [
"In this block, we build a “loss” function for our sequential policy gradient algorithm. When the right data is plugged in, the gradient of this loss is equal to the policy gradient."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "EaBokYCpg3FA"
},
"outputs": [],
"source": [
"import types\n",
"from typing import List, Callable\n",
"\n",
"import torch\n",
"from torch import nn, Tensor\n",
"from torch.nn import functional as F\n",
"from torchvision.models.resnet import BasicBlock\n",
"\n",
"\n",
"def trp_criterion(trp_blocks: nn.ModuleList, shared_head: Callable, criterion: Callable, lambdas: List[float], hidden_state: Tensor, logits: Tensor, targets: Tensor, loss_normalization=False):\n",
" losses, rewards = criterion(logits, targets)\n",
" returns = torch.ones_like(rewards, dtype=torch.float32, device=rewards.device)\n",
" if loss_normalization:\n",
" coeff = torch.mean(losses).detach()\n",
"\n",
" embeds = [hidden_state]\n",
" predictions = []\n",
" for k, w in enumerate(lambdas):\n",
" embeds.append(trp_blocks[k](embeds[-1]))\n",
" predictions.append(shared_head(embeds[-1]))\n",
" returns = returns + w * rewards\n",
" replica_losses, rewards = criterion(predictions[-1], targets, rewards)\n",
" losses = losses + replica_losses\n",
" loss = torch.mean(losses * returns)\n",
"\n",
" if loss_normalization:\n",
" with torch.no_grad():\n",
" coeff = torch.exp(coeff) / torch.exp(loss.detach())\n",
" loss = coeff * loss\n",
"\n",
" return loss"
]
},
{
"cell_type": "markdown",
"source": [
"In this block, we build a TPBlock for the Task Replica Prediction (TRP) module; This implementation provides the backbone without the shared prediction head."
],
"metadata": {
"id": "_Ig0Jm2w8DPH"
}
},
{
"cell_type": "code",
"source": [
"class TPBlock(nn.Module):\n",
" def __init__(self, depths: int, inplanes: int, planes: int):\n",
" super(TPBlock, self).__init__()\n",
"\n",
" blocks = [BasicBlock(inplanes=inplanes, planes=planes) for _ in range(depths)]\n",
" self.blocks = nn.Sequential(*blocks)\n",
" for name, param in self.blocks.named_parameters():\n",
" if 'conv' in name:\n",
" nn.init.zeros_(param) # Initialize weights\n",
" elif 'downsample' in name:\n",
" nn.init.zeros_(param) # Initialize biases\n",
"\n",
" def forward(self, x):\n",
" return self.blocks(x)"
],
"metadata": {
"id": "wkBlmJT96jZj"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"This implementation enables ResNet retraining in SPG mode.\n",
"\n",
"Components:\n",
"-------------------------------------------------------------------------------\n",
"1. gen_criterion()\n",
" - Purpose: compute per-sample losses and positional masks\n",
"\n",
"2. gen_shared_head()\n",
" - Purpose: Implements a shared prediction head that processes convolutional feature maps for prediction.\n",
"\n",
"3. gen_forward()\n",
" - Purpose: Extended forward pass supporting both traditional inference and SPG retraining."
],
"metadata": {
"id": "UGxQdKZaF2NT"
}
},
{
"cell_type": "code",
"source": [
"class ResNetConfig:\n",
" @staticmethod\n",
" def gen_criterion(label_smoothing=0.0, top_k=1):\n",
" def func(input, target, mask=None):\n",
" \"\"\"\n",
" Args:\n",
" input (Tensor): Input tensor of shape [B, C].\n",
" target (Tensor): Target labels of shape [B] or [B, C].\n",
"\n",
" Returns:\n",
" loss (Tensor): Scalar tensor representing the loss.\n",
" mask (Tensor): Boolean mask tensor of shape [B].\n",
" \"\"\"\n",
" label = torch.argmax(target, dim=1) if label_smoothing > 0.0 else target\n",
"\n",
" unmasked_loss = F.cross_entropy(input, label, reduction=\"none\", label_smoothing=label_smoothing)\n",
" if mask is None:\n",
" mask = torch.ones_like(unmasked_loss, dtype=torch.float32, device=target.device)\n",
" losses = mask * unmasked_loss\n",
"\n",
" with torch.no_grad():\n",
" topk_values, topk_indices = torch.topk(input, top_k, dim=-1)\n",
" mask = mask * torch.eq(topk_indices, label[:, None]).any(dim=-1).to(input.dtype)\n",
"\n",
" return losses, mask\n",
" return func\n",
"\n",
" @staticmethod\n",
" def gen_shared_head(self):\n",
" def func(x):\n",
" \"\"\"\n",
" Args:\n",
" x (Tensor): Hidden State tensor of shape [B, C, H, W].\n",
"\n",
" Returns:\n",
" logits (Tensor): Logits tensor of shape [B, C].\n",
" \"\"\"\n",
" x = self.layer4(x)\n",
" x = self.avgpool(x)\n",
" x = torch.flatten(x, 1)\n",
" logits = self.fc(x)\n",
" return logits\n",
" return func\n",
"\n",
" @staticmethod\n",
" def gen_forward(lambdas, loss_normalization=True, label_smoothing=0.0, top_k=1):\n",
" def func(self, x: Tensor, targets=None) -> Tensor:\n",
" x = self.conv1(x)\n",
" x = self.bn1(x)\n",
" x = self.relu(x)\n",
" x = self.maxpool(x)\n",
"\n",
" x = self.layer1(x)\n",
" x = self.layer2(x)\n",
" hidden_state = self.layer3(x)\n",
" x = self.layer4(hidden_state)\n",
" x = self.avgpool(x)\n",
" x = torch.flatten(x, 1)\n",
" logits = self.fc(x)\n",
"\n",
" if self.training:\n",
" shared_head = ResNetConfig.gen_shared_head(self)\n",
" criterion = ResNetConfig.gen_criterion(label_smoothing=label_smoothing, top_k=top_k)\n",
"\n",
" loss = trp_criterion(self.trp_blocks, shared_head, criterion, lambdas, hidden_state, logits, targets, loss_normalization=loss_normalization)\n",
"\n",
" return logits, loss\n",
"\n",
" return logits\n",
"\n",
" return func"
],
"metadata": {
"id": "kTZWkoLr8cfE"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Applies TRP modules to the base ResNet (main backbone). The k-th TRP module corresponding to a deeper ResNet variant with an additional depth of 3 * sum(depths[:k+1])."
],
"metadata": {
"id": "cCn6vwItH1CW"
}
},
{
"cell_type": "code",
"source": [
"def apply_trp(model, depths: List[int], planes: int, lambdas: List[float], **kwargs):\n",
" print(\"✅ Applying TRP to ResNet for Image Classification...\")\n",
" model.trp_blocks = torch.nn.ModuleList([TPBlock(depths=d, inplanes=planes, planes=planes) for d in depths])\n",
" model.forward = types.MethodType(ResNetConfig.gen_forward(lambdas), model)\n",
" return model"
],
"metadata": {
"id": "wXQF0oISH5Yp"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"The following is a training script for classification models, primarily based on the official TorchVision `train.py` reference implementation. We have made two modifications:\n",
"\n",
"Adding TRP Modules: We integrate TRP modules into the base model architecture before training begins:\n",
"\n",
"```python\n",
"if args.apply_trp:\n",
" model = apply_trp(model, args.trp_depths, args.trp_planes, args.trp_lambdas)\n",
"```\n",
"Removing TRP Modules: We remove the TRP components from the base model before saving the base model:\n",
"```python\n",
"if args.output_dir:\n",
" checkpoint = {\n",
" \"model\": model.state_dict() if not args.apply_trp else {k: v for k, v in model.state_dict().items() if not k.startswith(\"trp_blocks\")},\n",
" \"optimizer\": optimizer.state_dict(),\n",
" \"lr_scheduler\": lr_scheduler.state_dict(),\n",
" \"epoch\": epoch,\n",
" \"args\": args,\n",
" }\n",
" utils.save_on_master(checkpoint, os.path.join(args.output_dir, f\"model_{epoch}.pth\"))\n",
" utils.save_on_master(checkpoint, os.path.join(args.output_dir, \"checkpoint.pth\"))\n",
"```"
],
"metadata": {
"id": "kDjSAv3PJr7P"
}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "hK4Y7Sqv4xUa"
},
"outputs": [],
"source": [
"import datetime\n",
"import os\n",
"import time\n",
"import warnings\n",
"\n",
"import presets\n",
"import torch\n",
"import torch.utils.data\n",
"import torchvision\n",
"import utils\n",
"from torch import nn\n",
"from torchvision.transforms.functional import InterpolationMode\n",
"\n",
"\n",
"def load_data(traindir, valdir):\n",
" # Data loading code\n",
" print(\"Loading data\")\n",
" interpolation = InterpolationMode(\"bilinear\")\n",
"\n",
" print(\"Loading training data\")\n",
" st = time.time()\n",
" dataset = torchvision.datasets.ImageFolder(\n",
" traindir,\n",
" presets.ClassificationPresetTrain(crop_size=224, interpolation=interpolation, auto_augment_policy=None, random_erase_prob=0.0, ra_magnitude=9, augmix_severity=3),\n",
" )\n",
" print(\"Took\", time.time() - st)\n",
"\n",
" print(\"Loading validation data\")\n",
" dataset_test = torchvision.datasets.ImageFolder(\n",
" valdir,\n",
" presets.ClassificationPresetEval(crop_size=224, resize_size=256, interpolation=interpolation)\n",
" )\n",
"\n",
" print(\"Creating data loaders\")\n",
" train_sampler = torch.utils.data.RandomSampler(dataset)\n",
" test_sampler = torch.utils.data.SequentialSampler(dataset_test)\n",
"\n",
" return dataset, dataset_test, train_sampler, test_sampler\n",
"\n",
"\n",
"\n",
"def train_one_epoch(model, optimizer, data_loader, device, epoch, args):\n",
" model.train()\n",
" metric_logger = utils.MetricLogger(delimiter=\" \")\n",
" metric_logger.add_meter(\"lr\", utils.SmoothedValue(window_size=1, fmt=\"{value}\"))\n",
" metric_logger.add_meter(\"img/s\", utils.SmoothedValue(window_size=10, fmt=\"{value}\"))\n",
"\n",
" header = f\"Epoch: [{epoch}]\"\n",
" for i, (image, target) in enumerate(metric_logger.log_every(data_loader, args.print_freq, header)):\n",
" start_time = time.time()\n",
" image, target = image.to(device), target.to(device)\n",
" with torch.amp.autocast(\"cuda\", enabled=False):\n",
" output, loss = model(image, target)\n",
"\n",
" optimizer.zero_grad()\n",
" loss.backward()\n",
" optimizer.step()\n",
"\n",
" acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))\n",
" batch_size = image.shape[0]\n",
" metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0][\"lr\"])\n",
" metric_logger.meters[\"acc1\"].update(acc1.item(), n=batch_size)\n",
" metric_logger.meters[\"acc5\"].update(acc5.item(), n=batch_size)\n",
" metric_logger.meters[\"img/s\"].update(batch_size / (time.time() - start_time))\n",
"\n",
"\n",
"def evaluate(model, criterion, data_loader, device, print_freq=100, log_suffix=\"\"):\n",
" model.eval()\n",
" metric_logger = utils.MetricLogger(delimiter=\" \")\n",
" header = f\"Test: {log_suffix}\"\n",
"\n",
" num_processed_samples = 0\n",
" with torch.inference_mode():\n",
" for image, target in metric_logger.log_every(data_loader, print_freq, header):\n",
" image = image.to(device, non_blocking=True)\n",
" target = target.to(device, non_blocking=True)\n",
" output = model(image)\n",
" loss = criterion(output, target)\n",
"\n",
" acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))\n",
" # FIXME need to take into account that the datasets\n",
" # could have been padded in distributed setup\n",
" batch_size = image.shape[0]\n",
" metric_logger.update(loss=loss.item())\n",
" metric_logger.meters[\"acc1\"].update(acc1.item(), n=batch_size)\n",
" metric_logger.meters[\"acc5\"].update(acc5.item(), n=batch_size)\n",
" num_processed_samples += batch_size\n",
" # gather the stats from all processes\n",
"\n",
" num_processed_samples = utils.reduce_across_processes(num_processed_samples)\n",
" if (\n",
" hasattr(data_loader.dataset, \"__len__\")\n",
" and len(data_loader.dataset) != num_processed_samples\n",
" and torch.distributed.get_rank() == 0\n",
" ):\n",
" # See FIXME above\n",
" warnings.warn(\n",
" f\"It looks like the dataset has {len(data_loader.dataset)} samples, but {num_processed_samples} \"\n",
" \"samples were used for the validation, which might bias the results. \"\n",
" \"Try adjusting the batch size and / or the world size. \"\n",
" \"Setting the world size to 1 is always a safe bet.\"\n",
" )\n",
"\n",
" metric_logger.synchronize_between_processes()\n",
"\n",
" print(f\"{header} Acc@1 {metric_logger.acc1.global_avg:.3f} Acc@5 {metric_logger.acc5.global_avg:.3f}\")\n",
" return metric_logger.acc1.global_avg\n",
"\n",
"\n",
"def main(args):\n",
" if args.output_dir:\n",
" utils.mkdir(args.output_dir)\n",
" print(args)\n",
"\n",
" device = torch.device(args.device)\n",
"\n",
" if args.use_deterministic_algorithms:\n",
" torch.backends.cudnn.benchmark = False\n",
" torch.use_deterministic_algorithms(True)\n",
" else:\n",
" torch.backends.cudnn.benchmark = True\n",
"\n",
" train_dir = os.path.join(args.data_path, \"train\")\n",
" val_dir = os.path.join(args.data_path, \"val\")\n",
" dataset, dataset_test, train_sampler, test_sampler = load_data(train_dir, val_dir)\n",
"\n",
" num_classes = len(dataset.classes)\n",
" data_loader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, sampler=train_sampler, num_workers=16, pin_memory=True, collate_fn=None)\n",
" data_loader_test = torch.utils.data.DataLoader(dataset_test, batch_size=64, sampler=test_sampler, num_workers=16, pin_memory=True)\n",
"\n",
" print(\"Creating model\")\n",
" model = torchvision.models.get_model(args.model, weights=args.weights, num_classes=num_classes)\n",
" if args.apply_trp:\n",
" model = apply_trp(model, args.trp_depths, args.trp_planes, args.trp_lambdas)\n",
" model.to(device)\n",
"\n",
" parameters = utils.set_weight_decay(model, args.weight_decay, norm_weight_decay=None, custom_keys_weight_decay=None)\n",
" optimizer = torch.optim.SGD(parameters, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay, nesterov=False)\n",
"\n",
" main_lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma)\n",
" warmup_lr_scheduler = torch.optim.lr_scheduler.ConstantLR(optimizer, factor=args.lr_warmup_decay, total_iters=args.lr_warmup_epochs)\n",
" lr_scheduler = torch.optim.lr_scheduler.SequentialLR(optimizer, schedulers=[warmup_lr_scheduler, main_lr_scheduler], milestones=[args.lr_warmup_epochs])\n",
"\n",
"\n",
" print(\"Start training\")\n",
" start_time = time.time()\n",
" for epoch in range(args.epochs):\n",
" train_one_epoch(model, optimizer, data_loader, device, epoch, args)\n",
" lr_scheduler.step()\n",
" evaluate(model, nn.CrossEntropyLoss(), data_loader_test, device=device)\n",
" if args.output_dir:\n",
" checkpoint = {\n",
" \"model\": model.state_dict() if not args.apply_trp else {k: v for k, v in model.state_dict().items() if not k.startswith(\"trp_blocks\")}, # NOTE: remove TRP heads\n",
" \"optimizer\": optimizer.state_dict(),\n",
" \"lr_scheduler\": lr_scheduler.state_dict(),\n",
" \"epoch\": epoch,\n",
" \"args\": args,\n",
" }\n",
" utils.save_on_master(checkpoint, os.path.join(args.output_dir, f\"model_{epoch}.pth\"))\n",
" utils.save_on_master(checkpoint, os.path.join(args.output_dir, \"checkpoint.pth\"))\n",
"\n",
" total_time = time.time() - start_time\n",
" total_time_str = str(datetime.timedelta(seconds=int(total_time)))\n",
" print(f\"Training time {total_time_str}\")\n"
]
},
{
"cell_type": "markdown",
"source": [
"Prepare the [ImageNet](http://image-net.org/) dataset manually and place it in `/path/to/imagenet`. For image classification examples, pass the argument `--data-path=/path/to/imagenet` to the training script. The extracted dataset directory should follow this structure:\n",
"```setup\n",
"/path/to/imagenet/:\n",
" train/:\n",
" n01440764:\n",
" n01440764_18.JPEG ...\n",
" n01443537:\n",
" n01443537_2.JPEG ...\n",
" val/:\n",
" n01440764:\n",
" ILSVRC2012_val_00000293.JPEG ...\n",
" n01443537:\n",
" ILSVRC2012_val_00000236.JPEG ...\n",
"```\n",
"\n",
"Now you can apply the SPG algorithm in model retraining.\n",
"\n",
"**Implementation Note:**\n",
"\n",
"- This demonstration runs on Google Colab using a single GPU configuration\n",
"- Performance Improvement: Enhances ResNet18 validation accuracy (ACC@1) from XX.X% to YY.Y%\n",
"- For optimal results:\n",
" - Refer to our README.md for complete setup instructions\n",
" - Recommended hardware: 4× RTX A6000 GPUs"
],
"metadata": {
"id": "SV8s5k49KwgS"
}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "UDZxDNfT4xUb",
"outputId": "bcf86aa0-eb77-4815-e0fa-05997f1e1f1b"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"namespace(data_path='/home/cs/Documents/datasets/imagenet', model='resnet18', device='cuda', batch_size=256, epochs=10, opt='sgd', lr=0.0004, momentum=0.9, weight_decay=0.0001, lr_warmup_epochs=1, lr_warmup_decay=0.0, lr_step_size=2, lr_gamma=0.5, print_freq=100, output_dir='resnet18', use_deterministic_algorithms=False, weights='ResNet18_Weights.IMAGENET1K_V1', apply_trp=True, trp_depths=[1, 1, 1], trp_planes=256, trp_lambdas=[0.4, 0.2, 0.1])\n",
"Loading data\n",
"Loading training data\n",
"Took 2.6400649547576904\n",
"Loading validation data\n",
"Creating data loaders\n",
"Creating model\n",
"✅ Applying TRP to ResNet for Image Classification...\n",
"Start training\n",
"Epoch: [0] [ 0/5005] eta: 5:44:15 lr: 0.0 img/s: 492.1456954856547 loss: 0.7194 (0.7194) acc1: 69.1406 (69.1406) acc5: 86.3281 (86.3281) meanQV: 1.4840 (1.4840) stdQV: 0.3240 (0.3240) time: 4.1269 data: 3.6067 max mem: 8962\n",
"Epoch: [0] [ 100/5005] eta: 0:46:06 lr: 0.0 img/s: 487.81080383655046 loss: 0.7315 (0.7366) acc1: 68.7500 (68.9434) acc5: 87.1094 (87.2022) meanQV: 1.4813 (1.4826) stdQV: 0.3240 (0.3238) time: 0.5212 data: 0.0004 max mem: 8962\n",
"Epoch: [0] [ 200/5005] eta: 0:43:26 lr: 0.0 img/s: 494.6728449606332 loss: 0.7197 (0.7298) acc1: 68.7500 (69.0318) acc5: 87.5000 (87.2785) meanQV: 1.4813 (1.4832) stdQV: 0.3251 (0.3236) time: 0.5211 data: 0.0004 max mem: 8962\n",
"Epoch: [0] [ 300/5005] eta: 0:41:58 lr: 0.0 img/s: 487.94536242744385 loss: 0.7055 (0.7270) acc1: 70.7031 (69.1757) acc5: 86.7188 (87.3053) meanQV: 1.4949 (1.4842) stdQV: 0.3192 (0.3232) time: 0.5198 data: 0.0004 max mem: 8962\n",
"Epoch: [0] [ 400/5005] eta: 0:40:48 lr: 0.0 img/s: 493.8419675273725 loss: 0.7652 (0.7331) acc1: 67.9688 (68.9867) acc5: 87.1094 (87.2409) meanQV: 1.4758 (1.4829) stdQV: 0.3262 (0.3237) time: 0.5219 data: 0.0004 max mem: 8962\n",
"Epoch: [0] [ 500/5005] eta: 0:39:45 lr: 0.0 img/s: 490.99324013193245 loss: 0.7112 (0.7341) acc1: 69.1406 (68.9067) acc5: 87.1094 (87.2653) meanQV: 1.4840 (1.4823) stdQV: 0.3228 (0.3239) time: 0.5201 data: 0.0003 max mem: 8962\n",
"Epoch: [0] [ 600/5005] eta: 0:38:46 lr: 0.0 img/s: 493.63241471415074 loss: 0.7323 (0.7309) acc1: 69.5312 (69.0171) acc5: 87.8906 (87.3297) meanQV: 1.4867 (1.4831) stdQV: 0.3216 (0.3236) time: 0.5214 data: 0.0004 max mem: 8962\n",
"Epoch: [0] [ 700/5005] eta: 0:37:49 lr: 0.0 img/s: 487.50804150353844 loss: 0.7489 (0.7310) acc1: 68.7500 (69.0442) acc5: 86.3281 (87.3167) meanQV: 1.4813 (1.4833) stdQV: 0.3240 (0.3235) time: 0.5206 data: 0.0004 max mem: 8962\n",
"Epoch: [0] [ 800/5005] eta: 0:36:53 lr: 0.0 img/s: 491.46023226850616 loss: 0.7270 (0.7316) acc1: 69.1406 (69.0567) acc5: 87.8906 (87.3166) meanQV: 1.4840 (1.4834) stdQV: 0.3216 (0.3235) time: 0.5220 data: 0.0004 max mem: 8962\n",
"Epoch: [0] [ 900/5005] eta: 0:35:58 lr: 0.0 img/s: 490.80023055787785 loss: 0.7573 (0.7338) acc1: 68.3594 (68.9898) acc5: 86.7188 (87.3010) meanQV: 1.4785 (1.4829) stdQV: 0.3262 (0.3237) time: 0.5208 data: 0.0004 max mem: 8962\n",
"Epoch: [0] [1000/5005] eta: 0:35:03 lr: 0.0 img/s: 493.60609129495185 loss: 0.7472 (0.7342) acc1: 68.3594 (69.0087) acc5: 87.1094 (87.2924) meanQV: 1.4785 (1.4831) stdQV: 0.3262 (0.3237) time: 0.5212 data: 0.0004 max mem: 8962\n",
"Epoch: [0] [1100/5005] eta: 0:34:09 lr: 0.0 img/s: 493.3883500186788 loss: 0.7273 (0.7337) acc1: 68.3594 (69.0157) acc5: 86.3281 (87.2832) meanQV: 1.4785 (1.4831) stdQV: 0.3251 (0.3236) time: 0.5200 data: 0.0003 max mem: 8962\n",
"Epoch: [0] [1200/5005] eta: 0:33:15 lr: 0.0 img/s: 488.9129516588334 loss: 0.7296 (0.7333) acc1: 67.9688 (69.0434) acc5: 87.1094 (87.2827) meanQV: 1.4758 (1.4833) stdQV: 0.3251 (0.3235) time: 0.5207 data: 0.0003 max mem: 8962\n",
"Epoch: [0] [1300/5005] eta: 0:32:22 lr: 0.0 img/s: 496.11964440830207 loss: 0.7214 (0.7334) acc1: 69.1406 (69.0587) acc5: 86.7188 (87.2835) meanQV: 1.4840 (1.4834) stdQV: 0.3240 (0.3235) time: 0.5209 data: 0.0004 max mem: 8962\n",
"Epoch: [0] [1400/5005] eta: 0:31:29 lr: 0.0 img/s: 489.82739879256343 loss: 0.7335 (0.7330) acc1: 68.3594 (69.0832) acc5: 86.7188 (87.2881) meanQV: 1.4785 (1.4836) stdQV: 0.3240 (0.3234) time: 0.5208 data: 0.0004 max mem: 8962\n",
"Epoch: [0] [1500/5005] eta: 0:30:35 lr: 0.0 img/s: 488.2193641437147 loss: 0.7221 (0.7324) acc1: 69.1406 (69.0979) acc5: 87.8906 (87.3184) meanQV: 1.4840 (1.4837) stdQV: 0.3228 (0.3234) time: 0.5221 data: 0.0004 max mem: 8962\n",
"Epoch: [0] [1600/5005] eta: 0:29:43 lr: 0.0 img/s: 491.9973130670899 loss: 0.7626 (0.7324) acc1: 68.3594 (69.0891) acc5: 86.7188 (87.3175) meanQV: 1.4785 (1.4836) stdQV: 0.3251 (0.3234) time: 0.5204 data: 0.0004 max mem: 8962\n",
"Epoch: [0] [1700/5005] eta: 0:28:50 lr: 0.0 img/s: 491.90219695845224 loss: 0.7566 (0.7321) acc1: 70.3125 (69.0922) acc5: 87.1094 (87.3330) meanQV: 1.4922 (1.4836) stdQV: 0.3192 (0.3234) time: 0.5211 data: 0.0003 max mem: 8962\n",
"Epoch: [0] [1800/5005] eta: 0:27:57 lr: 0.0 img/s: 492.04353203565745 loss: 0.7514 (0.7323) acc1: 67.9688 (69.0897) acc5: 86.3281 (87.3206) meanQV: 1.4758 (1.4836) stdQV: 0.3262 (0.3234) time: 0.5207 data: 0.0004 max mem: 8962\n",
"Epoch: [0] [1900/5005] eta: 0:27:04 lr: 0.0 img/s: 489.4212747065615 loss: 0.6998 (0.7323) acc1: 68.7500 (69.0662) acc5: 88.2812 (87.3253) meanQV: 1.4813 (1.4835) stdQV: 0.3240 (0.3235) time: 0.5216 data: 0.0004 max mem: 8962\n",
"Epoch: [0] [2000/5005] eta: 0:26:11 lr: 0.0 img/s: 495.7586395402095 loss: 0.7553 (0.7335) acc1: 67.9688 (69.0319) acc5: 87.5000 (87.2974) meanQV: 1.4758 (1.4832) stdQV: 0.3273 (0.3236) time: 0.5215 data: 0.0003 max mem: 8962\n",
"Epoch: [0] [2100/5005] eta: 0:25:19 lr: 0.0 img/s: 489.2644978319551 loss: 0.7095 (0.7331) acc1: 68.7500 (69.0454) acc5: 87.5000 (87.3048) meanQV: 1.4813 (1.4833) stdQV: 0.3240 (0.3235) time: 0.5210 data: 0.0004 max mem: 8962\n",
"Epoch: [0] [2200/5005] eta: 0:24:26 lr: 0.0 img/s: 496.86875392465674 loss: 0.7402 (0.7334) acc1: 70.3125 (69.0735) acc5: 86.7188 (87.3154) meanQV: 1.4922 (1.4835) stdQV: 0.3204 (0.3234) time: 0.5210 data: 0.0004 max mem: 8962\n",
"Epoch: [0] [2300/5005] eta: 0:23:34 lr: 0.0 img/s: 494.81235650908434 loss: 0.7301 (0.7332) acc1: 68.7500 (69.0787) acc5: 87.1094 (87.3180) meanQV: 1.4813 (1.4836) stdQV: 0.3251 (0.3234) time: 0.5205 data: 0.0003 max mem: 8962\n",
"Epoch: [0] [2400/5005] eta: 0:22:41 lr: 0.0 img/s: 492.8439314901557 loss: 0.7250 (0.7332) acc1: 69.5312 (69.0799) acc5: 86.7188 (87.3132) meanQV: 1.4867 (1.4836) stdQV: 0.3228 (0.3234) time: 0.5205 data: 0.0003 max mem: 8962\n",
"Epoch: [0] [2500/5005] eta: 0:21:49 lr: 0.0 img/s: 496.70487248638824 loss: 0.7133 (0.7329) acc1: 67.9688 (69.0827) acc5: 86.3281 (87.3009) meanQV: 1.4758 (1.4836) stdQV: 0.3262 (0.3234) time: 0.5208 data: 0.0003 max mem: 8962\n",
"Epoch: [0] [2600/5005] eta: 0:20:56 lr: 0.0 img/s: 491.3833130219057 loss: 0.7494 (0.7331) acc1: 70.3125 (69.0795) acc5: 86.7188 (87.2938) meanQV: 1.4922 (1.4836) stdQV: 0.3204 (0.3234) time: 0.5203 data: 0.0003 max mem: 8962\n",
"Epoch: [0] [2700/5005] eta: 0:20:04 lr: 0.0 img/s: 488.37014076537906 loss: 0.7300 (0.7330) acc1: 68.7500 (69.0900) acc5: 87.1094 (87.2955) meanQV: 1.4813 (1.4836) stdQV: 0.3240 (0.3234) time: 0.5204 data: 0.0004 max mem: 8962\n",
"Epoch: [0] [2800/5005] eta: 0:19:12 lr: 0.0 img/s: 491.6548870066586 loss: 0.7110 (0.7331) acc1: 69.5312 (69.0993) acc5: 88.2812 (87.3015) meanQV: 1.4867 (1.4837) stdQV: 0.3228 (0.3234) time: 0.5216 data: 0.0005 max mem: 8962\n",
"Epoch: [0] [2900/5005] eta: 0:18:19 lr: 0.0 img/s: 490.05632164917586 loss: 0.7100 (0.7334) acc1: 69.5312 (69.0961) acc5: 87.5000 (87.3092) meanQV: 1.4867 (1.4837) stdQV: 0.3228 (0.3234) time: 0.5212 data: 0.0003 max mem: 8962\n",
"Epoch: [0] [3000/5005] eta: 0:17:27 lr: 0.0 img/s: 491.02018376984734 loss: 0.7217 (0.7338) acc1: 69.5312 (69.0922) acc5: 88.2812 (87.3148) meanQV: 1.4867 (1.4836) stdQV: 0.3228 (0.3234) time: 0.5212 data: 0.0003 max mem: 8962\n",
"Epoch: [0] [3100/5005] eta: 0:16:35 lr: 0.0 img/s: 488.71979426958876 loss: 0.6803 (0.7335) acc1: 68.3594 (69.0926) acc5: 87.1094 (87.3073) meanQV: 1.4785 (1.4836) stdQV: 0.3251 (0.3234) time: 0.5211 data: 0.0003 max mem: 8962\n",
"Epoch: [0] [3200/5005] eta: 0:15:42 lr: 0.0 img/s: 492.2176638610237 loss: 0.7217 (0.7332) acc1: 70.7031 (69.1058) acc5: 87.5000 (87.3127) meanQV: 1.4949 (1.4837) stdQV: 0.3192 (0.3233) time: 0.5208 data: 0.0004 max mem: 8962\n",
"Epoch: [0] [3300/5005] eta: 0:14:50 lr: 0.0 img/s: 491.9402840653201 loss: 0.7205 (0.7333) acc1: 69.1406 (69.1047) acc5: 87.1094 (87.3212) meanQV: 1.4840 (1.4837) stdQV: 0.3216 (0.3233) time: 0.5203 data: 0.0003 max mem: 8962\n",
"Epoch: [0] [3400/5005] eta: 0:13:58 lr: 0.0 img/s: 487.95378866338956 loss: 0.7223 (0.7333) acc1: 69.5312 (69.0997) acc5: 86.7188 (87.3139) meanQV: 1.4867 (1.4837) stdQV: 0.3216 (0.3234) time: 0.5214 data: 0.0004 max mem: 8962\n",
"Epoch: [0] [3500/5005] eta: 0:13:05 lr: 0.0 img/s: 1043.7659108075188 loss: 0.7439 (0.7335) acc1: 69.1406 (69.0932) acc5: 86.3281 (87.3065) meanQV: 1.4840 (1.4837) stdQV: 0.3216 (0.3234) time: 0.4635 data: 0.0003 max mem: 8962\n",
"Epoch: [0] [3600/5005] eta: 0:12:07 lr: 0.0 img/s: 1048.0888024707265 loss: 0.7388 (0.7336) acc1: 69.1406 (69.0959) acc5: 86.7188 (87.3047) meanQV: 1.4840 (1.4837) stdQV: 0.3228 (0.3234) time: 0.2795 data: 0.0011 max mem: 8962\n",
"Epoch: [0] [3700/5005] eta: 0:11:15 lr: 0.0 img/s: 491.45843271282087 loss: 0.7387 (0.7335) acc1: 69.5312 (69.0927) acc5: 86.7188 (87.3025) meanQV: 1.4867 (1.4836) stdQV: 0.3228 (0.3234) time: 0.5209 data: 0.0004 max mem: 8962\n",
"Epoch: [0] [3800/5005] eta: 0:10:23 lr: 0.0 img/s: 496.6446795362795 loss: 0.7232 (0.7336) acc1: 69.9219 (69.0989) acc5: 87.8906 (87.3037) meanQV: 1.4895 (1.4837) stdQV: 0.3204 (0.3234) time: 0.5210 data: 0.0004 max mem: 8962\n",
"Epoch: [0] [3900/5005] eta: 0:09:32 lr: 0.0 img/s: 492.508007014193 loss: 0.7213 (0.7336) acc1: 67.9688 (69.0933) acc5: 87.1094 (87.2962) meanQV: 1.4758 (1.4837) stdQV: 0.3273 (0.3234) time: 0.5213 data: 0.0003 max mem: 8962\n",
"Epoch: [0] [4000/5005] eta: 0:08:40 lr: 0.0 img/s: 488.4174580719702 loss: 0.7132 (0.7336) acc1: 68.7500 (69.0951) acc5: 87.5000 (87.2945) meanQV: 1.4813 (1.4837) stdQV: 0.3240 (0.3234) time: 0.5211 data: 0.0003 max mem: 8962\n",
"Epoch: [0] [4100/5005] eta: 0:07:48 lr: 0.0 img/s: 495.24666769675684 loss: 0.7654 (0.7338) acc1: 68.3594 (69.0866) acc5: 87.1094 (87.2870) meanQV: 1.4785 (1.4836) stdQV: 0.3251 (0.3234) time: 0.5212 data: 0.0004 max mem: 8962\n",
"Epoch: [0] [4200/5005] eta: 0:06:56 lr: 0.0 img/s: 490.48949008347176 loss: 0.7638 (0.7341) acc1: 66.7969 (69.0754) acc5: 86.7188 (87.2836) meanQV: 1.4676 (1.4835) stdQV: 0.3262 (0.3234) time: 0.5206 data: 0.0003 max mem: 8962\n",
"Epoch: [0] [4300/5005] eta: 0:06:05 lr: 0.0 img/s: 487.7678139386137 loss: 0.7096 (0.7339) acc1: 69.1406 (69.0847) acc5: 87.1094 (87.2826) meanQV: 1.4840 (1.4836) stdQV: 0.3240 (0.3234) time: 0.5218 data: 0.0004 max mem: 8962\n",
"Epoch: [0] [4400/5005] eta: 0:05:13 lr: 0.0 img/s: 493.6394498964211 loss: 0.7463 (0.7340) acc1: 68.3594 (69.0806) acc5: 87.8906 (87.2854) meanQV: 1.4785 (1.4836) stdQV: 0.3262 (0.3234) time: 0.5201 data: 0.0004 max mem: 8962\n",
"Epoch: [0] [4500/5005] eta: 0:04:21 lr: 0.0 img/s: 485.9301278068194 loss: 0.7351 (0.7337) acc1: 69.1406 (69.0835) acc5: 87.1094 (87.2907) meanQV: 1.4840 (1.4836) stdQV: 0.3240 (0.3234) time: 0.5212 data: 0.0003 max mem: 8962\n",
"Epoch: [0] [4600/5005] eta: 0:03:29 lr: 0.0 img/s: 488.56480022495765 loss: 0.7084 (0.7340) acc1: 68.3594 (69.0736) acc5: 86.7188 (87.2877) meanQV: 1.4785 (1.4835) stdQV: 0.3262 (0.3234) time: 0.5211 data: 0.0003 max mem: 8962\n",
"Epoch: [0] [4700/5005] eta: 0:02:38 lr: 0.0 img/s: 494.1863106933297 loss: 0.7403 (0.7337) acc1: 68.7500 (69.0823) acc5: 87.1094 (87.2872) meanQV: 1.4813 (1.4836) stdQV: 0.3251 (0.3234) time: 0.5210 data: 0.0004 max mem: 8962\n",
"Epoch: [0] [4800/5005] eta: 0:01:46 lr: 0.0 img/s: 491.70689603851804 loss: 0.7220 (0.7338) acc1: 71.0938 (69.0803) acc5: 86.7188 (87.2814) meanQV: 1.4977 (1.4836) stdQV: 0.3167 (0.3234) time: 0.5212 data: 0.0003 max mem: 8962\n",
"Epoch: [0] [4900/5005] eta: 0:00:54 lr: 0.0 img/s: 493.2093111277595 loss: 0.7027 (0.7336) acc1: 69.5312 (69.0827) acc5: 86.3281 (87.2757) meanQV: 1.4867 (1.4836) stdQV: 0.3228 (0.3234) time: 0.5207 data: 0.0004 max mem: 8962\n",
"Epoch: [0] [5000/5005] eta: 0:00:02 lr: 0.0 img/s: 488.95235848734404 loss: 0.7240 (0.7339) acc1: 69.5312 (69.0705) acc5: 86.7188 (87.2706) meanQV: 1.4867 (1.4835) stdQV: 0.3216 (0.3234) time: 0.5214 data: 0.0002 max mem: 8962\n",
"Epoch: [0] Total time: 0:43:17\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/cs/anaconda3/envs/csenv/lib/python3.9/site-packages/torch/optim/lr_scheduler.py:243: UserWarning: The epoch parameter in `scheduler.step()` was not necessary and is being deprecated where possible. Please use `scheduler.step()` to step the scheduler. During the deprecation, if epoch is different from None, the closed form is used instead of the new chainable form, where available. Please open an issue if you are unable to replicate your use case: https://github.com/pytorch/pytorch/issues/new/choose.\n",
" warnings.warn(EPOCH_DEPRECATION_WARNING, UserWarning)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Test: [ 0/6250] eta: 2:26:50 loss: 0.8858 (0.8858) acc1: 75.0000 (75.0000) acc5: 100.0000 (100.0000) time: 1.4097 data: 0.7689 max mem: 8962\n",
"Test: [ 100/6250] eta: 0:02:03 loss: 0.2054 (0.6172) acc1: 100.0000 (83.7871) acc5: 100.0000 (95.6683) time: 0.0066 data: 0.0006 max mem: 8962\n",
"Test: [ 200/6250] eta: 0:01:22 loss: 0.6502 (0.6427) acc1: 87.5000 (84.3284) acc5: 87.5000 (95.0249) time: 0.0064 data: 0.0007 max mem: 8962\n",
"Test: [ 300/6250] eta: 0:01:08 loss: 1.1768 (0.8467) acc1: 62.5000 (78.3638) acc5: 87.5000 (93.2724) time: 0.0075 data: 0.0010 max mem: 8962\n",
"Test: [ 400/6250] eta: 0:00:59 loss: 1.1007 (0.9660) acc1: 75.0000 (75.4676) acc5: 87.5000 (92.2070) time: 0.0074 data: 0.0017 max mem: 8962\n",
"Test: [ 500/6250] eta: 0:00:55 loss: 1.1372 (1.0088) acc1: 75.0000 (74.0519) acc5: 87.5000 (91.8663) time: 0.0080 data: 0.0021 max mem: 8962\n",
"Test: [ 600/6250] eta: 0:00:51 loss: 0.5046 (0.9217) acc1: 87.5000 (76.2479) acc5: 100.0000 (92.6789) time: 0.0071 data: 0.0009 max mem: 8962\n",
"Test: [ 700/6250] eta: 0:00:49 loss: 0.5742 (0.9105) acc1: 87.5000 (76.6762) acc5: 100.0000 (92.7068) time: 0.0052 data: 0.0006 max mem: 8962\n",
"Test: [ 800/6250] eta: 0:00:47 loss: 0.8010 (0.9392) acc1: 75.0000 (76.1392) acc5: 87.5000 (92.3221) time: 0.0077 data: 0.0010 max mem: 8962\n",
"Test: [ 900/6250] eta: 0:00:46 loss: 0.4006 (0.8848) acc1: 87.5000 (77.4695) acc5: 100.0000 (92.8413) time: 0.0066 data: 0.0006 max mem: 8962\n",
"Test: [1000/6250] eta: 0:00:44 loss: 0.8992 (0.8725) acc1: 75.0000 (77.6474) acc5: 100.0000 (92.9570) time: 0.0070 data: 0.0007 max mem: 8962\n",
"Test: [1100/6250] eta: 0:00:43 loss: 1.0749 (0.9068) acc1: 62.5000 (76.6803) acc5: 100.0000 (92.8020) time: 0.0079 data: 0.0019 max mem: 8962\n",
"Test: [1200/6250] eta: 0:00:42 loss: 1.0901 (0.9146) acc1: 75.0000 (76.3114) acc5: 87.5000 (92.8809) time: 0.0081 data: 0.0007 max mem: 8962\n",
"Test: [1300/6250] eta: 0:00:41 loss: 0.6278 (0.9170) acc1: 75.0000 (76.0857) acc5: 100.0000 (93.0630) time: 0.0062 data: 0.0006 max mem: 8962\n",
"Test: [1400/6250] eta: 0:00:39 loss: 0.8946 (0.9150) acc1: 75.0000 (76.1153) acc5: 87.5000 (93.0496) time: 0.0070 data: 0.0006 max mem: 8962\n",
"Test: [1500/6250] eta: 0:00:38 loss: 0.7951 (0.9198) acc1: 75.0000 (75.8328) acc5: 100.0000 (93.0963) time: 0.0068 data: 0.0006 max mem: 8962\n",
"Test: [1600/6250] eta: 0:00:37 loss: 0.2566 (0.9163) acc1: 87.5000 (75.6636) acc5: 100.0000 (93.2386) time: 0.0072 data: 0.0007 max mem: 8962\n",
"Test: [1700/6250] eta: 0:00:36 loss: 1.0530 (0.9138) acc1: 75.0000 (75.6393) acc5: 100.0000 (93.3789) time: 0.0087 data: 0.0016 max mem: 8962\n",
"Test: [1800/6250] eta: 0:00:35 loss: 1.1882 (0.9209) acc1: 62.5000 (75.3956) acc5: 87.5000 (93.3509) time: 0.0053 data: 0.0004 max mem: 8962\n",
"Test: [1900/6250] eta: 0:00:34 loss: 1.0323 (0.9166) acc1: 62.5000 (75.6707) acc5: 100.0000 (93.4508) time: 0.0059 data: 0.0006 max mem: 8962\n",
"Test: [2000/6250] eta: 0:00:33 loss: 0.4827 (0.9227) acc1: 75.0000 (75.5622) acc5: 100.0000 (93.4283) time: 0.0062 data: 0.0005 max mem: 8962\n",
"Test: [2100/6250] eta: 0:00:32 loss: 0.4458 (0.9042) acc1: 87.5000 (76.1185) acc5: 100.0000 (93.5983) time: 0.0059 data: 0.0005 max mem: 8962\n",
"Test: [2200/6250] eta: 0:00:31 loss: 0.1983 (0.8953) acc1: 87.5000 (76.3233) acc5: 100.0000 (93.6620) time: 0.0058 data: 0.0005 max mem: 8962\n",
"Test: [2300/6250] eta: 0:00:30 loss: 0.6167 (0.8971) acc1: 87.5000 (76.2929) acc5: 100.0000 (93.6658) time: 0.0067 data: 0.0010 max mem: 8962\n",
"Test: [2400/6250] eta: 0:00:29 loss: 1.1606 (0.9060) acc1: 62.5000 (76.1245) acc5: 87.5000 (93.5652) time: 0.0069 data: 0.0006 max mem: 8962\n",
"Test: [2500/6250] eta: 0:00:29 loss: 0.9882 (0.9067) acc1: 75.0000 (76.2095) acc5: 100.0000 (93.5176) time: 0.0063 data: 0.0005 max mem: 8962\n",
"Test: [2600/6250] eta: 0:00:27 loss: 2.1575 (0.9289) acc1: 50.0000 (75.7785) acc5: 75.0000 (93.2045) time: 0.0058 data: 0.0006 max mem: 8962\n",
"Test: [2700/6250] eta: 0:00:27 loss: 0.6626 (0.9389) acc1: 75.0000 (75.6248) acc5: 100.0000 (93.0859) time: 0.0069 data: 0.0006 max mem: 8962\n",
"Test: [2800/6250] eta: 0:00:26 loss: 1.7137 (0.9616) acc1: 50.0000 (75.1205) acc5: 87.5000 (92.8106) time: 0.0062 data: 0.0006 max mem: 8962\n",
"Test: [2900/6250] eta: 0:00:25 loss: 1.7213 (0.9804) acc1: 50.0000 (74.7630) acc5: 87.5000 (92.5758) time: 0.0076 data: 0.0012 max mem: 8962\n",
"Test: [3000/6250] eta: 0:00:24 loss: 2.1883 (1.0015) acc1: 50.0000 (74.4585) acc5: 75.0000 (92.2567) time: 0.0066 data: 0.0013 max mem: 8962\n",
"Test: [3100/6250] eta: 0:00:23 loss: 1.9025 (1.0238) acc1: 50.0000 (73.9600) acc5: 87.5000 (91.9824) time: 0.0069 data: 0.0007 max mem: 8962\n",
"Test: [3200/6250] eta: 0:00:22 loss: 0.7818 (1.0439) acc1: 75.0000 (73.5786) acc5: 100.0000 (91.7252) time: 0.0066 data: 0.0009 max mem: 8962\n",
"Test: [3300/6250] eta: 0:00:21 loss: 1.3260 (1.0571) acc1: 50.0000 (73.2316) acc5: 87.5000 (91.5972) time: 0.0062 data: 0.0010 max mem: 8962\n",
"Test: [3400/6250] eta: 0:00:21 loss: 2.2889 (1.0708) acc1: 50.0000 (72.9638) acc5: 75.0000 (91.4069) time: 0.0054 data: 0.0004 max mem: 8962\n",
"Test: [3500/6250] eta: 0:00:20 loss: 1.8139 (1.0788) acc1: 62.5000 (72.8399) acc5: 87.5000 (91.2704) time: 0.0056 data: 0.0005 max mem: 8962\n",
"Test: [3600/6250] eta: 0:00:19 loss: 0.5227 (1.0757) acc1: 75.0000 (72.9797) acc5: 100.0000 (91.2837) time: 0.0061 data: 0.0004 max mem: 8962\n",
"Test: [3700/6250] eta: 0:00:18 loss: 1.5864 (1.0885) acc1: 50.0000 (72.7101) acc5: 87.5000 (91.0970) time: 0.0110 data: 0.0061 max mem: 8962\n",
"Test: [3800/6250] eta: 0:00:18 loss: 0.7844 (1.0958) acc1: 87.5000 (72.5993) acc5: 87.5000 (90.9826) time: 0.0059 data: 0.0005 max mem: 8962\n",
"Test: [3900/6250] eta: 0:00:17 loss: 2.1642 (1.1114) acc1: 37.5000 (72.2699) acc5: 75.0000 (90.7684) time: 0.0070 data: 0.0013 max mem: 8962\n",
"Test: [4000/6250] eta: 0:00:16 loss: 1.3791 (1.1249) acc1: 37.5000 (71.9789) acc5: 87.5000 (90.6086) time: 0.0061 data: 0.0009 max mem: 8962\n",
"Test: [4100/6250] eta: 0:00:15 loss: 1.8430 (1.1361) acc1: 50.0000 (71.8026) acc5: 87.5000 (90.4566) time: 0.0058 data: 0.0007 max mem: 8962\n",
"Test: [4200/6250] eta: 0:00:14 loss: 0.5273 (1.1408) acc1: 87.5000 (71.6556) acc5: 100.0000 (90.4428) time: 0.0054 data: 0.0004 max mem: 8962\n",
"Test: [4300/6250] eta: 0:00:14 loss: 0.5790 (1.1499) acc1: 75.0000 (71.5124) acc5: 87.5000 (90.3075) time: 0.0062 data: 0.0009 max mem: 8962\n",
"Test: [4400/6250] eta: 0:00:13 loss: 0.8274 (1.1557) acc1: 75.0000 (71.3730) acc5: 100.0000 (90.2721) time: 0.0063 data: 0.0009 max mem: 8962\n",
"Test: [4500/6250] eta: 0:00:12 loss: 1.3455 (1.1605) acc1: 75.0000 (71.3008) acc5: 87.5000 (90.2327) time: 0.0059 data: 0.0007 max mem: 8962\n",
"Test: [4600/6250] eta: 0:00:11 loss: 1.6417 (1.1701) acc1: 62.5000 (71.1476) acc5: 87.5000 (90.0619) time: 0.0066 data: 0.0008 max mem: 8962\n",
"Test: [4700/6250] eta: 0:00:11 loss: 1.4379 (1.1789) acc1: 62.5000 (70.8971) acc5: 87.5000 (89.9197) time: 0.0057 data: 0.0004 max mem: 8962\n",
"Test: [4800/6250] eta: 0:00:10 loss: 1.3181 (1.1859) acc1: 62.5000 (70.7899) acc5: 87.5000 (89.8198) time: 0.0061 data: 0.0006 max mem: 8962\n",
"Test: [4900/6250] eta: 0:00:09 loss: 0.5202 (1.1891) acc1: 87.5000 (70.7432) acc5: 100.0000 (89.7648) time: 0.0052 data: 0.0005 max mem: 8962\n",
"Test: [5000/6250] eta: 0:00:08 loss: 2.0605 (1.1999) acc1: 62.5000 (70.5934) acc5: 75.0000 (89.6296) time: 0.0062 data: 0.0012 max mem: 8962\n",
"Test: [5100/6250] eta: 0:00:08 loss: 1.3460 (1.2044) acc1: 62.5000 (70.5229) acc5: 87.5000 (89.5976) time: 0.0080 data: 0.0008 max mem: 8962\n",
"Test: [5200/6250] eta: 0:00:07 loss: 1.1308 (1.2106) acc1: 75.0000 (70.4264) acc5: 87.5000 (89.5236) time: 0.0055 data: 0.0005 max mem: 8962\n",
"Test: [5300/6250] eta: 0:00:06 loss: 1.5583 (1.2231) acc1: 62.5000 (70.1354) acc5: 87.5000 (89.3157) time: 0.0069 data: 0.0016 max mem: 8962\n",
"Test: [5400/6250] eta: 0:00:06 loss: 0.8486 (1.2267) acc1: 75.0000 (70.0542) acc5: 87.5000 (89.2728) time: 0.0064 data: 0.0012 max mem: 8962\n",
"Test: [5500/6250] eta: 0:00:05 loss: 1.0672 (1.2307) acc1: 62.5000 (69.9509) acc5: 87.5000 (89.2179) time: 0.0071 data: 0.0005 max mem: 8962\n",
"Test: [5600/6250] eta: 0:00:04 loss: 1.0070 (1.2359) acc1: 62.5000 (69.8648) acc5: 87.5000 (89.1202) time: 0.0096 data: 0.0041 max mem: 8962\n",
"Test: [5700/6250] eta: 0:00:03 loss: 2.0962 (1.2487) acc1: 37.5000 (69.5843) acc5: 87.5000 (89.0019) time: 0.0070 data: 0.0006 max mem: 8962\n",
"Test: [5800/6250] eta: 0:00:03 loss: 0.7288 (1.2454) acc1: 75.0000 (69.6582) acc5: 100.0000 (89.0471) time: 0.0061 data: 0.0005 max mem: 8962\n",
"Test: [5900/6250] eta: 0:00:02 loss: 1.1190 (1.2431) acc1: 75.0000 (69.6873) acc5: 100.0000 (89.0781) time: 0.0067 data: 0.0006 max mem: 8962\n",
"Test: [6000/6250] eta: 0:00:01 loss: 0.6253 (1.2358) acc1: 87.5000 (69.8425) acc5: 87.5000 (89.1622) time: 0.0068 data: 0.0006 max mem: 8962\n",
"Test: [6100/6250] eta: 0:00:01 loss: 1.1478 (1.2438) acc1: 62.5000 (69.6423) acc5: 100.0000 (89.0776) time: 0.0069 data: 0.0006 max mem: 8962\n",
"Test: [6200/6250] eta: 0:00:00 loss: 0.2636 (1.2384) acc1: 87.5000 (69.7650) acc5: 100.0000 (89.1469) time: 0.0071 data: 0.0024 max mem: 8962\n",
"Test: Total time: 0:00:44\n",
"Test: Acc@1 69.802 Acc@5 89.166\n",
"Epoch: [1] [ 0/5005] eta: 5:42:56 lr: 0.0004 img/s: 480.9318095087941 loss: 0.7240 (0.7240) acc1: 67.1875 (67.1875) acc5: 89.4531 (89.4531) meanQV: 1.4703 (1.4703) stdQV: 0.3293 (0.3293) time: 4.1113 data: 3.5789 max mem: 8962\n",
"Epoch: [1] [ 100/5005] eta: 0:45:51 lr: 0.0004 img/s: 493.27547238807784 loss: 0.7663 (0.7544) acc1: 68.3594 (68.9047) acc5: 85.9375 (87.0166) meanQV: 1.4785 (1.4823) stdQV: 0.3262 (0.3240) time: 0.5211 data: 0.0004 max mem: 8962\n",
"Epoch: [1] [ 200/5005] eta: 0:43:21 lr: 0.0004 img/s: 494.15947332208856 loss: 0.7673 (0.7576) acc1: 68.7500 (69.0512) acc5: 86.3281 (86.9928) meanQV: 1.4813 (1.4833) stdQV: 0.3240 (0.3234) time: 0.5218 data: 0.0003 max mem: 8962\n",
"Epoch: [1] [ 300/5005] eta: 0:41:55 lr: 0.0004 img/s: 490.8006792413158 loss: 0.7602 (0.7692) acc1: 69.9219 (68.8824) acc5: 88.2812 (86.9770) meanQV: 1.4895 (1.4821) stdQV: 0.3204 (0.3239) time: 0.5209 data: 0.0004 max mem: 8962\n",
"Epoch: [1] [ 400/5005] eta: 0:40:46 lr: 0.0004 img/s: 488.3024018976519 loss: 0.7641 (0.7740) acc1: 67.9688 (68.7734) acc5: 87.5000 (86.9837) meanQV: 1.4758 (1.4814) stdQV: 0.3262 (0.3243) time: 0.5211 data: 0.0003 max mem: 8962\n",
"Epoch: [1] [ 500/5005] eta: 0:39:44 lr: 0.0004 img/s: 491.2133664120496 loss: 0.7673 (0.7762) acc1: 69.9219 (68.8451) acc5: 87.5000 (87.0439) meanQV: 1.4895 (1.4819) stdQV: 0.3216 (0.3241) time: 0.5217 data: 0.0003 max mem: 8962\n",
"Epoch: [1] [ 600/5005] eta: 0:38:45 lr: 0.0004 img/s: 489.9574830025097 loss: 0.7744 (0.7785) acc1: 68.7500 (68.8845) acc5: 87.5000 (87.0379) meanQV: 1.4813 (1.4821) stdQV: 0.3240 (0.3240) time: 0.5210 data: 0.0004 max mem: 8962\n",
"Epoch: [1] [ 700/5005] eta: 0:37:48 lr: 0.0004 img/s: 490.1766813359385 loss: 0.7570 (0.7804) acc1: 69.9219 (68.9227) acc5: 87.1094 (87.0347) meanQV: 1.4895 (1.4824) stdQV: 0.3216 (0.3238) time: 0.5210 data: 0.0003 max mem: 8962\n",
"Epoch: [1] [ 800/5005] eta: 0:36:53 lr: 0.0004 img/s: 488.54479381319 loss: 0.7706 (0.7828) acc1: 69.1406 (68.9124) acc5: 86.3281 (87.0435) meanQV: 1.4840 (1.4823) stdQV: 0.3226 (0.3239) time: 0.5213 data: 0.0003 max mem: 8962\n",
"Epoch: [1] [ 900/5005] eta: 0:35:58 lr: 0.0004 img/s: 486.8855385165102 loss: 0.7941 (0.7848) acc1: 68.3594 (68.9390) acc5: 87.1094 (87.0465) meanQV: 1.4785 (1.4825) stdQV: 0.3251 (0.3238) time: 0.5219 data: 0.0003 max mem: 8962\n",
"Epoch: [1] [1000/5005] eta: 0:35:03 lr: 0.0004 img/s: 492.5010040446165 loss: 0.7671 (0.7867) acc1: 69.5312 (68.9233) acc5: 87.1094 (87.0430) meanQV: 1.4867 (1.4824) stdQV: 0.3228 (0.3238) time: 0.5216 data: 0.0003 max mem: 8962\n",
"Epoch: [1] [1100/5005] eta: 0:34:10 lr: 0.0004 img/s: 491.8478935923928 loss: 0.7918 (0.7885) acc1: 68.3594 (68.8866) acc5: 87.1094 (86.9948) meanQV: 1.4785 (1.4821) stdQV: 0.3251 (0.3240) time: 0.5219 data: 0.0003 max mem: 8962\n",
"Epoch: [1] [1200/5005] eta: 0:33:16 lr: 0.0004 img/s: 492.04127725035846 loss: 0.8054 (0.7904) acc1: 68.3594 (68.8863) acc5: 87.1094 (87.0059) meanQV: 1.4785 (1.4821) stdQV: 0.3240 (0.3240) time: 0.5212 data: 0.0003 max mem: 8962\n",
"Epoch: [1] [1300/5005] eta: 0:32:22 lr: 0.0004 img/s: 493.6503434775133 loss: 0.8003 (0.7921) acc1: 68.7500 (68.8953) acc5: 86.7188 (87.0238) meanQV: 1.4813 (1.4822) stdQV: 0.3240 (0.3239) time: 0.5208 data: 0.0004 max mem: 8962\n",
"Epoch: [1] [1400/5005] eta: 0:31:29 lr: 0.0004 img/s: 493.7590786833788 loss: 0.8469 (0.7947) acc1: 67.5781 (68.8757) acc5: 86.3281 (87.0087) meanQV: 1.4730 (1.4821) stdQV: 0.3273 (0.3240) time: 0.5214 data: 0.0003 max mem: 8962\n",
"Epoch: [1] [1500/5005] eta: 0:30:36 lr: 0.0004 img/s: 493.85105292835783 loss: 0.8278 (0.7964) acc1: 67.9688 (68.8734) acc5: 87.1094 (87.0126) meanQV: 1.4758 (1.4820) stdQV: 0.3260 (0.3240) time: 0.5209 data: 0.0003 max mem: 8962\n",
"Epoch: [1] [1600/5005] eta: 0:29:43 lr: 0.0004 img/s: 489.0960134101013 loss: 0.8061 (0.7976) acc1: 69.5312 (68.8713) acc5: 86.7188 (87.0096) meanQV: 1.4867 (1.4820) stdQV: 0.3228 (0.3240) time: 0.5216 data: 0.0003 max mem: 8962\n",
"Epoch: [1] [1700/5005] eta: 0:28:50 lr: 0.0004 img/s: 487.0217960638814 loss: 0.8219 (0.7990) acc1: 69.1406 (68.8761) acc5: 86.3281 (87.0118) meanQV: 1.4840 (1.4821) stdQV: 0.3204 (0.3240) time: 0.5216 data: 0.0003 max mem: 8962\n",
"Epoch: [1] [1800/5005] eta: 0:27:57 lr: 0.0004 img/s: 487.4064667244674 loss: 0.8217 (0.8005) acc1: 67.1875 (68.8660) acc5: 85.9375 (86.9964) meanQV: 1.4703 (1.4820) stdQV: 0.3273 (0.3240) time: 0.5210 data: 0.0003 max mem: 8962\n",
"Epoch: [1] [1900/5005] eta: 0:27:05 lr: 0.0004 img/s: 495.115358261054 loss: 0.8361 (0.8026) acc1: 67.9688 (68.8474) acc5: 86.3281 (86.9830) meanQV: 1.4746 (1.4818) stdQV: 0.3270 (0.3240) time: 0.5206 data: 0.0003 max mem: 8962\n",
"Epoch: [1] [2000/5005] eta: 0:26:12 lr: 0.0004 img/s: 488.846174928818 loss: 0.8257 (0.8035) acc1: 69.1406 (68.8619) acc5: 87.1094 (86.9956) meanQV: 1.4840 (1.4819) stdQV: 0.3228 (0.3240) time: 0.5216 data: 0.0003 max mem: 8962\n",
"Epoch: [1] [2100/5005] eta: 0:25:19 lr: 0.0004 img/s: 491.2070743506753 loss: 0.8428 (0.8053) acc1: 66.7969 (68.8420) acc5: 87.1094 (86.9922) meanQV: 1.4676 (1.4818) stdQV: 0.3303 (0.3241) time: 0.5210 data: 0.0003 max mem: 8962\n",
"Epoch: [1] [2200/5005] eta: 0:24:27 lr: 0.0004 img/s: 488.1822949084529 loss: 0.8558 (0.8064) acc1: 68.3594 (68.8570) acc5: 87.5000 (87.0222) meanQV: 1.4785 (1.4819) stdQV: 0.3251 (0.3240) time: 0.5213 data: 0.0004 max mem: 8962\n",
"Epoch: [1] [2300/5005] eta: 0:23:34 lr: 0.0004 img/s: 491.70599535560405 loss: 0.8227 (0.8072) acc1: 68.3594 (68.8542) acc5: 87.1094 (87.0248) meanQV: 1.4785 (1.4819) stdQV: 0.3262 (0.3240) time: 0.5208 data: 0.0004 max mem: 8962\n",
"Epoch: [1] [2400/5005] eta: 0:22:42 lr: 0.0004 img/s: 488.04228171446755 loss: 0.8344 (0.8086) acc1: 69.5312 (68.8348) acc5: 87.5000 (87.0231) meanQV: 1.4867 (1.4817) stdQV: 0.3228 (0.3241) time: 0.5212 data: 0.0003 max mem: 8962\n",
"Epoch: [1] [2500/5005] eta: 0:21:49 lr: 0.0004 img/s: 493.9346543052109 loss: 0.8142 (0.8099) acc1: 67.1875 (68.8248) acc5: 86.3281 (87.0107) meanQV: 1.4703 (1.4817) stdQV: 0.3273 (0.3241) time: 0.5206 data: 0.0003 max mem: 8962\n",
"Epoch: [1] [2600/5005] eta: 0:20:57 lr: 0.0004 img/s: 493.71140181999846 loss: 0.8310 (0.8114) acc1: 69.5312 (68.8209) acc5: 87.8906 (87.0080) meanQV: 1.4855 (1.4816) stdQV: 0.3216 (0.3241) time: 0.5220 data: 0.0003 max mem: 8962\n",
"Epoch: [1] [2700/5005] eta: 0:20:04 lr: 0.0004 img/s: 490.4764950910866 loss: 0.8228 (0.8124) acc1: 68.7500 (68.8167) acc5: 87.5000 (87.0055) meanQV: 1.4813 (1.4816) stdQV: 0.3238 (0.3241) time: 0.5214 data: 0.0004 max mem: 8962\n",
"Epoch: [1] [2800/5005] eta: 0:19:12 lr: 0.0004 img/s: 489.5152105330343 loss: 0.8128 (0.8133) acc1: 69.1406 (68.8236) acc5: 87.1094 (87.0178) meanQV: 1.4840 (1.4817) stdQV: 0.3240 (0.3241) time: 0.5212 data: 0.0004 max mem: 8962\n",
"Epoch: [1] [2900/5005] eta: 0:18:20 lr: 0.0004 img/s: 490.35195733551564 loss: 0.8154 (0.8143) acc1: 67.5781 (68.8168) acc5: 86.7188 (87.0159) meanQV: 1.4730 (1.4816) stdQV: 0.3273 (0.3241) time: 0.5220 data: 0.0003 max mem: 8962\n",
"Epoch: [1] [3000/5005] eta: 0:17:27 lr: 0.0004 img/s: 496.8430038188373 loss: 0.8169 (0.8153) acc1: 69.1406 (68.8008) acc5: 88.2812 (87.0080) meanQV: 1.4840 (1.4815) stdQV: 0.3228 (0.3242) time: 0.5210 data: 0.0004 max mem: 8962\n",
"Epoch: [1] [3100/5005] eta: 0:16:35 lr: 0.0004 img/s: 488.5263449079129 loss: 0.8308 (0.8165) acc1: 70.3125 (68.7841) acc5: 88.2812 (87.0036) meanQV: 1.4922 (1.4814) stdQV: 0.3192 (0.3242) time: 0.5215 data: 0.0004 max mem: 8962\n",
"Epoch: [1] [3200/5005] eta: 0:15:43 lr: 0.0004 img/s: 491.9060279391008 loss: 0.8449 (0.8176) acc1: 68.3594 (68.7768) acc5: 86.3281 (86.9960) meanQV: 1.4785 (1.4813) stdQV: 0.3262 (0.3242) time: 0.5214 data: 0.0004 max mem: 8962\n",
"Epoch: [1] [3300/5005] eta: 0:14:50 lr: 0.0004 img/s: 493.2963213941315 loss: 0.8492 (0.8186) acc1: 67.9688 (68.7659) acc5: 87.1094 (86.9994) meanQV: 1.4758 (1.4812) stdQV: 0.3248 (0.3243) time: 0.5203 data: 0.0004 max mem: 8962\n",
"Epoch: [1] [3400/5005] eta: 0:13:58 lr: 0.0004 img/s: 489.8253877234111 loss: 0.8006 (0.8190) acc1: 68.3594 (68.7695) acc5: 86.7188 (87.0057) meanQV: 1.4785 (1.4813) stdQV: 0.3192 (0.3243) time: 0.5208 data: 0.0004 max mem: 8962\n",
"Epoch: [1] [3500/5005] eta: 0:13:06 lr: 0.0004 img/s: 487.77468294972033 loss: 0.8505 (0.8198) acc1: 68.7500 (68.7579) acc5: 85.9375 (87.0026) meanQV: 1.4813 (1.4812) stdQV: 0.3248 (0.3243) time: 0.5211 data: 0.0004 max mem: 8962\n",
"Epoch: [1] [3600/5005] eta: 0:12:13 lr: 0.0004 img/s: 493.46703224484054 loss: 0.8441 (0.8204) acc1: 68.3594 (68.7684) acc5: 87.1094 (86.9979) meanQV: 1.4785 (1.4813) stdQV: 0.3262 (0.3243) time: 0.5203 data: 0.0004 max mem: 8962\n",
"Epoch: [1] [3700/5005] eta: 0:11:21 lr: 0.0004 img/s: 489.55359849141115 loss: 0.8019 (0.8213) acc1: 69.9219 (68.7655) acc5: 86.7188 (86.9992) meanQV: 1.4891 (1.4812) stdQV: 0.3214 (0.3243) time: 0.5221 data: 0.0004 max mem: 8962\n",
"Epoch: [1] [3800/5005] eta: 0:10:29 lr: 0.0004 img/s: 493.67462881592127 loss: 0.8116 (0.8217) acc1: 69.1406 (68.7733) acc5: 86.7188 (87.0059) meanQV: 1.4840 (1.4813) stdQV: 0.3216 (0.3243) time: 0.5207 data: 0.0004 max mem: 8962\n",
"Epoch: [1] [3900/5005] eta: 0:09:37 lr: 0.0004 img/s: 491.10327860529725 loss: 0.8894 (0.8224) acc1: 67.5781 (68.7723) acc5: 85.9375 (87.0182) meanQV: 1.4730 (1.4813) stdQV: 0.3273 (0.3243) time: 0.5204 data: 0.0003 max mem: 8962\n",
"Epoch: [1] [4000/5005] eta: 0:08:42 lr: 0.0004 img/s: 658.0155167215349 loss: 0.8130 (0.8233) acc1: 68.7500 (68.7736) acc5: 86.7188 (87.0157) meanQV: 1.4813 (1.4813) stdQV: 0.3228 (0.3243) time: 0.3829 data: 0.0022 max mem: 8962\n",
"Epoch: [1] [4100/5005] eta: 0:07:48 lr: 0.0004 img/s: 495.21469028956733 loss: 0.8295 (0.8240) acc1: 69.1406 (68.7658) acc5: 87.5000 (87.0174) meanQV: 1.4816 (1.4812) stdQV: 0.3235 (0.3243) time: 0.5208 data: 0.0003 max mem: 8962\n",
"Epoch: [1] [4200/5005] eta: 0:06:57 lr: 0.0004 img/s: 492.8694949672994 loss: 0.8703 (0.8249) acc1: 68.3594 (68.7643) acc5: 87.1094 (87.0155) meanQV: 1.4773 (1.4812) stdQV: 0.3262 (0.3243) time: 0.5213 data: 0.0005 max mem: 8962\n",
"Epoch: [1] [4300/5005] eta: 0:06:05 lr: 0.0004 img/s: 490.85205892006695 loss: 0.8436 (0.8255) acc1: 67.5781 (68.7648) acc5: 87.1094 (87.0136) meanQV: 1.4730 (1.4812) stdQV: 0.3262 (0.3243) time: 0.5211 data: 0.0003 max mem: 8962\n",
"Epoch: [1] [4400/5005] eta: 0:05:13 lr: 0.0004 img/s: 493.98669227672667 loss: 0.8510 (0.8258) acc1: 68.3594 (68.7773) acc5: 86.7188 (87.0168) meanQV: 1.4785 (1.4813) stdQV: 0.3251 (0.3242) time: 0.5209 data: 0.0004 max mem: 8962\n",
"Epoch: [1] [4500/5005] eta: 0:04:21 lr: 0.0004 img/s: 493.84991723495295 loss: 0.8170 (0.8264) acc1: 68.3594 (68.7790) acc5: 88.2812 (87.0156) meanQV: 1.4785 (1.4813) stdQV: 0.3238 (0.3242) time: 0.5213 data: 0.0003 max mem: 8962\n",
"Epoch: [1] [4600/5005] eta: 0:03:30 lr: 0.0004 img/s: 488.5125647070813 loss: 0.8377 (0.8271) acc1: 68.3594 (68.7688) acc5: 87.5000 (87.0158) meanQV: 1.4770 (1.4812) stdQV: 0.3262 (0.3243) time: 0.5200 data: 0.0004 max mem: 8962\n",
"Epoch: [1] [4700/5005] eta: 0:02:38 lr: 0.0004 img/s: 491.9828855090406 loss: 0.8226 (0.8275) acc1: 68.3594 (68.7709) acc5: 87.8906 (87.0220) meanQV: 1.4785 (1.4812) stdQV: 0.3216 (0.3243) time: 0.5212 data: 0.0004 max mem: 8962\n",
"Epoch: [1] [4800/5005] eta: 0:01:46 lr: 0.0004 img/s: 493.26708795863277 loss: 0.8528 (0.8281) acc1: 68.7500 (68.7686) acc5: 86.3281 (87.0159) meanQV: 1.4809 (1.4812) stdQV: 0.3251 (0.3243) time: 0.5216 data: 0.0003 max mem: 8962\n",
"Epoch: [1] [4900/5005] eta: 0:00:54 lr: 0.0004 img/s: 491.2724747144307 loss: 0.8068 (0.8286) acc1: 69.5312 (68.7636) acc5: 87.1094 (87.0159) meanQV: 1.4867 (1.4812) stdQV: 0.3228 (0.3243) time: 0.5217 data: 0.0003 max mem: 8962\n",
"Epoch: [1] [5000/5005] eta: 0:00:02 lr: 0.0004 img/s: 492.8498131172718 loss: 0.8547 (0.8292) acc1: 67.9688 (68.7634) acc5: 86.3281 (87.0148) meanQV: 1.4758 (1.4812) stdQV: 0.3262 (0.3243) time: 0.5210 data: 0.0002 max mem: 8962\n",
"Epoch: [1] Total time: 0:43:16\n",
"Test: [ 0/6250] eta: 1:21:57 loss: 0.8673 (0.8673) acc1: 62.5000 (62.5000) acc5: 100.0000 (100.0000) time: 0.7867 data: 0.7725 max mem: 8962\n",
"Test: [ 100/6250] eta: 0:01:29 loss: 0.1868 (0.6206) acc1: 100.0000 (83.5396) acc5: 100.0000 (95.4208) time: 0.0063 data: 0.0008 max mem: 8962\n",
"Test: [ 200/6250] eta: 0:01:03 loss: 0.7102 (0.6552) acc1: 75.0000 (83.7687) acc5: 100.0000 (94.6517) time: 0.0056 data: 0.0004 max mem: 8962\n",
"Test: [ 300/6250] eta: 0:00:54 loss: 1.2776 (0.8690) acc1: 62.5000 (78.6130) acc5: 87.5000 (93.0233) time: 0.0061 data: 0.0009 max mem: 8962\n",
"Test: [ 400/6250] eta: 0:00:48 loss: 0.9489 (0.9890) acc1: 75.0000 (75.8416) acc5: 87.5000 (92.0823) time: 0.0060 data: 0.0005 max mem: 8962\n",
"Test: [ 500/6250] eta: 0:00:45 loss: 1.0595 (1.0403) acc1: 75.0000 (74.4261) acc5: 87.5000 (91.6168) time: 0.0053 data: 0.0007 max mem: 8962\n",
"Test: [ 600/6250] eta: 0:00:42 loss: 0.4378 (0.9454) acc1: 87.5000 (76.4975) acc5: 100.0000 (92.3877) time: 0.0051 data: 0.0004 max mem: 8962\n",
"Test: [ 700/6250] eta: 0:00:40 loss: 0.4026 (0.9303) acc1: 87.5000 (76.7653) acc5: 100.0000 (92.4394) time: 0.0056 data: 0.0006 max mem: 8962\n",
"Test: [ 800/6250] eta: 0:00:39 loss: 0.7303 (0.9549) acc1: 75.0000 (76.2797) acc5: 87.5000 (92.0880) time: 0.0063 data: 0.0006 max mem: 8962\n",
"Test: [ 900/6250] eta: 0:00:37 loss: 0.3813 (0.8983) acc1: 87.5000 (77.5943) acc5: 100.0000 (92.6471) time: 0.0063 data: 0.0006 max mem: 8962\n",
"Test: [1000/6250] eta: 0:00:36 loss: 0.8989 (0.8855) acc1: 75.0000 (77.7473) acc5: 100.0000 (92.7947) time: 0.0056 data: 0.0007 max mem: 8962\n",
"Test: [1100/6250] eta: 0:00:35 loss: 1.1069 (0.9229) acc1: 75.0000 (76.8847) acc5: 100.0000 (92.6203) time: 0.0064 data: 0.0022 max mem: 8962\n",
"Test: [1200/6250] eta: 0:00:34 loss: 1.0983 (0.9314) acc1: 75.0000 (76.4467) acc5: 87.5000 (92.6624) time: 0.0055 data: 0.0005 max mem: 8962\n",
"Test: [1300/6250] eta: 0:00:33 loss: 0.5355 (0.9346) acc1: 75.0000 (76.1145) acc5: 100.0000 (92.8132) time: 0.0057 data: 0.0005 max mem: 8962\n",
"Test: [1400/6250] eta: 0:00:32 loss: 0.7667 (0.9310) acc1: 75.0000 (76.2313) acc5: 100.0000 (92.9069) time: 0.0052 data: 0.0004 max mem: 8962\n",
"Test: [1500/6250] eta: 0:00:31 loss: 0.8760 (0.9357) acc1: 62.5000 (75.9494) acc5: 100.0000 (92.9880) time: 0.0053 data: 0.0007 max mem: 8962\n",
"Test: [1600/6250] eta: 0:00:30 loss: 0.0993 (0.9286) acc1: 100.0000 (75.9135) acc5: 100.0000 (93.1371) time: 0.0053 data: 0.0005 max mem: 8962\n",
"Test: [1700/6250] eta: 0:00:29 loss: 1.1072 (0.9257) acc1: 62.5000 (75.8157) acc5: 100.0000 (93.2760) time: 0.0068 data: 0.0021 max mem: 8962\n",
"Test: [1800/6250] eta: 0:00:28 loss: 1.1913 (0.9373) acc1: 62.5000 (75.5622) acc5: 87.5000 (93.2537) time: 0.0054 data: 0.0006 max mem: 8962\n",
"Test: [1900/6250] eta: 0:00:28 loss: 1.0258 (0.9308) acc1: 62.5000 (75.8417) acc5: 100.0000 (93.3653) time: 0.0050 data: 0.0006 max mem: 8962\n",
"Test: [2000/6250] eta: 0:00:27 loss: 0.5154 (0.9364) acc1: 87.5000 (75.7871) acc5: 100.0000 (93.3221) time: 0.0055 data: 0.0006 max mem: 8962\n",
"Test: [2100/6250] eta: 0:00:27 loss: 0.3852 (0.9175) acc1: 87.5000 (76.3267) acc5: 100.0000 (93.4793) time: 0.0061 data: 0.0012 max mem: 8962\n",
"Test: [2200/6250] eta: 0:00:26 loss: 0.2291 (0.9102) acc1: 87.5000 (76.4652) acc5: 100.0000 (93.5654) time: 0.0063 data: 0.0007 max mem: 8962\n",
"Test: [2300/6250] eta: 0:00:25 loss: 0.6943 (0.9109) acc1: 87.5000 (76.4776) acc5: 100.0000 (93.5843) time: 0.0062 data: 0.0005 max mem: 8962\n",
"Test: [2400/6250] eta: 0:00:25 loss: 0.8836 (0.9201) acc1: 75.0000 (76.3432) acc5: 87.5000 (93.4975) time: 0.0056 data: 0.0011 max mem: 8962\n",
"Test: [2500/6250] eta: 0:00:24 loss: 0.7644 (0.9205) acc1: 87.5000 (76.4794) acc5: 100.0000 (93.4626) time: 0.0061 data: 0.0010 max mem: 8962\n",
"Test: [2600/6250] eta: 0:00:23 loss: 2.2800 (0.9451) acc1: 37.5000 (75.9948) acc5: 75.0000 (93.1469) time: 0.0055 data: 0.0006 max mem: 8962\n",
"Test: [2700/6250] eta: 0:00:23 loss: 0.7858 (0.9555) acc1: 75.0000 (75.7960) acc5: 87.5000 (93.0118) time: 0.0060 data: 0.0006 max mem: 8962\n",
"Test: [2800/6250] eta: 0:00:22 loss: 1.6738 (0.9770) acc1: 62.5000 (75.3481) acc5: 75.0000 (92.7704) time: 0.0052 data: 0.0004 max mem: 8962\n",
"Test: [2900/6250] eta: 0:00:21 loss: 1.9858 (0.9960) acc1: 37.5000 (74.9138) acc5: 87.5000 (92.5241) time: 0.0071 data: 0.0006 max mem: 8962\n",
"Test: [3000/6250] eta: 0:00:21 loss: 2.4274 (1.0179) acc1: 50.0000 (74.6126) acc5: 75.0000 (92.1984) time: 0.0060 data: 0.0005 max mem: 8962\n",
"Test: [3100/6250] eta: 0:00:20 loss: 1.8322 (1.0420) acc1: 50.0000 (74.1172) acc5: 75.0000 (91.9461) time: 0.0064 data: 0.0005 max mem: 8962\n",
"Test: [3200/6250] eta: 0:00:19 loss: 0.7034 (1.0615) acc1: 75.0000 (73.6996) acc5: 100.0000 (91.7291) time: 0.0049 data: 0.0004 max mem: 8962\n",
"Test: [3300/6250] eta: 0:00:19 loss: 1.2400 (1.0739) acc1: 62.5000 (73.3528) acc5: 87.5000 (91.6238) time: 0.0050 data: 0.0006 max mem: 8962\n",
"Test: [3400/6250] eta: 0:00:18 loss: 2.3805 (1.0877) acc1: 37.5000 (73.0851) acc5: 75.0000 (91.4327) time: 0.0060 data: 0.0007 max mem: 8962\n",
"Test: [3500/6250] eta: 0:00:17 loss: 1.7449 (1.0943) acc1: 50.0000 (72.9899) acc5: 87.5000 (91.2953) time: 0.0074 data: 0.0023 max mem: 8962\n",
"Test: [3600/6250] eta: 0:00:16 loss: 0.4245 (1.0910) acc1: 87.5000 (73.1325) acc5: 100.0000 (91.2941) time: 0.0059 data: 0.0004 max mem: 8962\n",
"Test: [3700/6250] eta: 0:00:16 loss: 1.6126 (1.1052) acc1: 50.0000 (72.8519) acc5: 87.5000 (91.1105) time: 0.0121 data: 0.0065 max mem: 8962\n",
"Test: [3800/6250] eta: 0:00:15 loss: 0.7444 (1.1120) acc1: 87.5000 (72.7605) acc5: 87.5000 (90.9761) time: 0.0057 data: 0.0005 max mem: 8962\n",
"Test: [3900/6250] eta: 0:00:14 loss: 2.3107 (1.1276) acc1: 50.0000 (72.4494) acc5: 75.0000 (90.7652) time: 0.0052 data: 0.0005 max mem: 8962\n",
"Test: [4000/6250] eta: 0:00:14 loss: 1.4615 (1.1421) acc1: 62.5000 (72.1788) acc5: 87.5000 (90.5992) time: 0.0056 data: 0.0004 max mem: 8962\n",
"Test: [4100/6250] eta: 0:00:13 loss: 1.7447 (1.1522) acc1: 62.5000 (72.0129) acc5: 87.5000 (90.4840) time: 0.0059 data: 0.0005 max mem: 8962\n",
"Test: [4200/6250] eta: 0:00:12 loss: 0.4051 (1.1574) acc1: 87.5000 (71.8609) acc5: 100.0000 (90.4725) time: 0.0061 data: 0.0005 max mem: 8962\n",
"Test: [4300/6250] eta: 0:00:12 loss: 0.4819 (1.1662) acc1: 75.0000 (71.7420) acc5: 87.5000 (90.3191) time: 0.0058 data: 0.0007 max mem: 8962\n",
"Test: [4400/6250] eta: 0:00:11 loss: 0.8488 (1.1727) acc1: 75.0000 (71.5633) acc5: 100.0000 (90.2835) time: 0.0052 data: 0.0005 max mem: 8962\n",
"Test: [4500/6250] eta: 0:00:11 loss: 1.1410 (1.1786) acc1: 62.5000 (71.4619) acc5: 87.5000 (90.2383) time: 0.0058 data: 0.0004 max mem: 8962\n",
"Test: [4600/6250] eta: 0:00:10 loss: 1.5850 (1.1891) acc1: 50.0000 (71.2834) acc5: 87.5000 (90.0701) time: 0.0064 data: 0.0010 max mem: 8962\n",
"Test: [4700/6250] eta: 0:00:09 loss: 1.3859 (1.1988) acc1: 62.5000 (70.9982) acc5: 87.5000 (89.9463) time: 0.0051 data: 0.0005 max mem: 8962\n",
"Test: [4800/6250] eta: 0:00:09 loss: 1.2475 (1.2056) acc1: 62.5000 (70.8811) acc5: 87.5000 (89.8563) time: 0.0054 data: 0.0005 max mem: 8962\n",
"Test: [4900/6250] eta: 0:00:08 loss: 0.4116 (1.2104) acc1: 87.5000 (70.8121) acc5: 100.0000 (89.7750) time: 0.0058 data: 0.0009 max mem: 8962\n",
"Test: [5000/6250] eta: 0:00:07 loss: 2.0346 (1.2224) acc1: 62.5000 (70.6259) acc5: 75.0000 (89.6321) time: 0.0059 data: 0.0005 max mem: 8962\n",
"Test: [5100/6250] eta: 0:00:07 loss: 1.2888 (1.2271) acc1: 62.5000 (70.5327) acc5: 87.5000 (89.5952) time: 0.0069 data: 0.0006 max mem: 8962\n",
"Test: [5200/6250] eta: 0:00:06 loss: 1.0585 (1.2335) acc1: 75.0000 (70.4216) acc5: 87.5000 (89.5236) time: 0.0053 data: 0.0005 max mem: 8962\n",
"Test: [5300/6250] eta: 0:00:05 loss: 1.5391 (1.2470) acc1: 62.5000 (70.1401) acc5: 87.5000 (89.3440) time: 0.0058 data: 0.0006 max mem: 8962\n",
"Test: [5400/6250] eta: 0:00:05 loss: 0.9108 (1.2497) acc1: 75.0000 (70.0889) acc5: 87.5000 (89.2936) time: 0.0057 data: 0.0010 max mem: 8962\n",
"Test: [5500/6250] eta: 0:00:04 loss: 0.9651 (1.2539) acc1: 75.0000 (69.9668) acc5: 87.5000 (89.2383) time: 0.0060 data: 0.0006 max mem: 8962\n",
"Test: [5600/6250] eta: 0:00:04 loss: 0.8866 (1.2592) acc1: 62.5000 (69.8915) acc5: 87.5000 (89.1381) time: 0.0056 data: 0.0005 max mem: 8962\n",
"Test: [5700/6250] eta: 0:00:03 loss: 1.9771 (1.2739) acc1: 37.5000 (69.5799) acc5: 75.0000 (88.9954) time: 0.0055 data: 0.0004 max mem: 8962\n",
"Test: [5800/6250] eta: 0:00:02 loss: 0.5795 (1.2705) acc1: 75.0000 (69.6410) acc5: 100.0000 (89.0407) time: 0.0060 data: 0.0006 max mem: 8962\n",
"Test: [5900/6250] eta: 0:00:02 loss: 1.1301 (1.2675) acc1: 75.0000 (69.6831) acc5: 100.0000 (89.0824) time: 0.0058 data: 0.0005 max mem: 8962\n",
"Test: [6000/6250] eta: 0:00:01 loss: 0.5545 (1.2598) acc1: 87.5000 (69.8384) acc5: 87.5000 (89.1685) time: 0.0059 data: 0.0004 max mem: 8962\n",
"Test: [6100/6250] eta: 0:00:00 loss: 1.2558 (1.2676) acc1: 62.5000 (69.6648) acc5: 87.5000 (89.0797) time: 0.0053 data: 0.0004 max mem: 8962\n",
"Test: [6200/6250] eta: 0:00:00 loss: 0.1734 (1.2610) acc1: 87.5000 (69.7831) acc5: 100.0000 (89.1610) time: 0.0060 data: 0.0007 max mem: 8962\n",
"Test: Total time: 0:00:38\n",
"Test: Acc@1 69.816 Acc@5 89.174\n",
"Epoch: [2] [ 0/5005] eta: 5:24:29 lr: 0.0004 img/s: 488.37947021283276 loss: 0.7970 (0.7970) acc1: 72.2656 (72.2656) acc5: 87.1094 (87.1094) meanQV: 1.5059 (1.5059) stdQV: 0.3140 (0.3140) time: 3.8899 data: 3.3657 max mem: 8962\n",
"Epoch: [2] [ 100/5005] eta: 0:45:25 lr: 0.0004 img/s: 493.19209398441154 loss: 0.8641 (0.8689) acc1: 67.9688 (68.4483) acc5: 87.1094 (86.6530) meanQV: 1.4758 (1.4788) stdQV: 0.3251 (0.3251) time: 0.5211 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [ 200/5005] eta: 0:43:07 lr: 0.0004 img/s: 491.1342779344896 loss: 0.8738 (0.8655) acc1: 68.7500 (68.5595) acc5: 87.5000 (86.8898) meanQV: 1.4813 (1.4796) stdQV: 0.3240 (0.3248) time: 0.5215 data: 0.0004 max mem: 8962\n",
"Epoch: [2] [ 300/5005] eta: 0:41:47 lr: 0.0004 img/s: 487.00059052814623 loss: 0.8533 (0.8685) acc1: 68.3594 (68.4191) acc5: 87.5000 (86.8005) meanQV: 1.4785 (1.4786) stdQV: 0.3251 (0.3252) time: 0.5215 data: 0.0004 max mem: 8962\n",
"Epoch: [2] [ 400/5005] eta: 0:40:40 lr: 0.0004 img/s: 488.72224116185464 loss: 0.8569 (0.8636) acc1: 69.1406 (68.5932) acc5: 87.1094 (86.8931) meanQV: 1.4840 (1.4799) stdQV: 0.3216 (0.3247) time: 0.5220 data: 0.0004 max mem: 8962\n",
"Epoch: [2] [ 500/5005] eta: 0:39:39 lr: 0.0004 img/s: 485.98511188265843 loss: 0.8240 (0.8635) acc1: 69.5312 (68.5403) acc5: 87.8906 (86.8723) meanQV: 1.4867 (1.4795) stdQV: 0.3215 (0.3249) time: 0.5207 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [ 600/5005] eta: 0:38:41 lr: 0.0004 img/s: 493.6265143933163 loss: 0.8603 (0.8641) acc1: 68.7500 (68.5791) acc5: 86.3281 (86.8962) meanQV: 1.4801 (1.4798) stdQV: 0.3251 (0.3248) time: 0.5222 data: 0.0004 max mem: 8962\n",
"Epoch: [2] [ 700/5005] eta: 0:37:44 lr: 0.0004 img/s: 495.0733539463698 loss: 0.8482 (0.8641) acc1: 68.3594 (68.5656) acc5: 87.1094 (86.9194) meanQV: 1.4785 (1.4797) stdQV: 0.3260 (0.3249) time: 0.5209 data: 0.0004 max mem: 8962\n",
"Epoch: [2] [ 800/5005] eta: 0:36:49 lr: 0.0004 img/s: 490.3255347956828 loss: 0.8578 (0.8649) acc1: 69.1406 (68.5959) acc5: 86.7188 (86.9270) meanQV: 1.4840 (1.4799) stdQV: 0.3240 (0.3248) time: 0.5212 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [ 900/5005] eta: 0:35:55 lr: 0.0004 img/s: 487.8480383248159 loss: 0.8300 (0.8626) acc1: 69.1406 (68.6646) acc5: 87.5000 (86.9767) meanQV: 1.4840 (1.4804) stdQV: 0.3228 (0.3246) time: 0.5215 data: 0.0004 max mem: 8962\n",
"Epoch: [2] [1000/5005] eta: 0:35:01 lr: 0.0004 img/s: 491.5558526149826 loss: 0.8513 (0.8634) acc1: 69.1406 (68.6805) acc5: 87.5000 (86.9775) meanQV: 1.4840 (1.4805) stdQV: 0.3226 (0.3245) time: 0.5211 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [1100/5005] eta: 0:34:07 lr: 0.0004 img/s: 490.84757118315395 loss: 0.8577 (0.8636) acc1: 68.3594 (68.6847) acc5: 86.7188 (86.9710) meanQV: 1.4785 (1.4805) stdQV: 0.3251 (0.3245) time: 0.5209 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [1200/5005] eta: 0:33:14 lr: 0.0004 img/s: 494.1517410611354 loss: 0.8542 (0.8649) acc1: 68.7500 (68.6462) acc5: 86.3281 (86.9607) meanQV: 1.4813 (1.4802) stdQV: 0.3240 (0.3246) time: 0.5209 data: 0.0004 max mem: 8962\n",
"Epoch: [2] [1300/5005] eta: 0:32:20 lr: 0.0004 img/s: 487.5868519700021 loss: 0.8400 (0.8649) acc1: 69.1406 (68.6611) acc5: 86.3281 (86.9457) meanQV: 1.4840 (1.4803) stdQV: 0.3240 (0.3246) time: 0.5207 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [1400/5005] eta: 0:31:27 lr: 0.0004 img/s: 493.3883500186788 loss: 0.8124 (0.8646) acc1: 69.1406 (68.6887) acc5: 87.8906 (86.9658) meanQV: 1.4840 (1.4805) stdQV: 0.3240 (0.3245) time: 0.5210 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [1500/5005] eta: 0:30:34 lr: 0.0004 img/s: 495.2411855622316 loss: 0.8914 (0.8663) acc1: 67.5781 (68.6449) acc5: 87.5000 (86.9530) meanQV: 1.4719 (1.4802) stdQV: 0.3280 (0.3246) time: 0.5220 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [1600/5005] eta: 0:29:41 lr: 0.0004 img/s: 492.28401072281827 loss: 0.8554 (0.8661) acc1: 69.9219 (68.6358) acc5: 87.5000 (86.9669) meanQV: 1.4891 (1.4802) stdQV: 0.3216 (0.3246) time: 0.5215 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [1700/5005] eta: 0:28:49 lr: 0.0004 img/s: 488.3163923205836 loss: 0.8374 (0.8661) acc1: 69.5312 (68.6529) acc5: 87.5000 (86.9794) meanQV: 1.4867 (1.4803) stdQV: 0.3228 (0.3246) time: 0.5213 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [1800/5005] eta: 0:27:56 lr: 0.0004 img/s: 493.57046837953203 loss: 0.8886 (0.8664) acc1: 68.3594 (68.6639) acc5: 86.7188 (86.9808) meanQV: 1.4785 (1.4804) stdQV: 0.3251 (0.3245) time: 0.5211 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [1900/5005] eta: 0:27:03 lr: 0.0004 img/s: 490.1453552810568 loss: 0.8548 (0.8668) acc1: 68.3594 (68.6598) acc5: 87.1094 (86.9768) meanQV: 1.4785 (1.4803) stdQV: 0.3249 (0.3245) time: 0.5213 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [2000/5005] eta: 0:26:11 lr: 0.0004 img/s: 488.1270344653269 loss: 0.9081 (0.8673) acc1: 67.9688 (68.6596) acc5: 85.9375 (86.9690) meanQV: 1.4754 (1.4803) stdQV: 0.3270 (0.3245) time: 0.5214 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [2100/5005] eta: 0:25:18 lr: 0.0004 img/s: 489.5038292141757 loss: 0.8766 (0.8678) acc1: 68.7500 (68.6416) acc5: 87.5000 (86.9612) meanQV: 1.4813 (1.4802) stdQV: 0.3240 (0.3246) time: 0.5213 data: 0.0004 max mem: 8962\n",
"Epoch: [2] [2200/5005] eta: 0:24:26 lr: 0.0004 img/s: 493.80040608063206 loss: 0.8591 (0.8679) acc1: 68.3594 (68.6433) acc5: 86.7188 (86.9536) meanQV: 1.4785 (1.4802) stdQV: 0.3259 (0.3246) time: 0.5222 data: 0.0004 max mem: 8962\n",
"Epoch: [2] [2300/5005] eta: 0:23:33 lr: 0.0004 img/s: 487.89902333117954 loss: 0.8695 (0.8681) acc1: 67.5781 (68.6313) acc5: 86.3281 (86.9520) meanQV: 1.4703 (1.4801) stdQV: 0.3262 (0.3246) time: 0.5212 data: 0.0004 max mem: 8962\n",
"Epoch: [2] [2400/5005] eta: 0:22:41 lr: 0.0004 img/s: 495.53373554749567 loss: 0.9173 (0.8689) acc1: 67.5781 (68.6229) acc5: 86.3281 (86.9381) meanQV: 1.4730 (1.4801) stdQV: 0.3270 (0.3247) time: 0.5204 data: 0.0004 max mem: 8962\n",
"Epoch: [2] [2500/5005] eta: 0:21:48 lr: 0.0004 img/s: 492.0162505212319 loss: 0.8747 (0.8695) acc1: 67.9688 (68.6191) acc5: 87.1094 (86.9432) meanQV: 1.4758 (1.4800) stdQV: 0.3262 (0.3247) time: 0.5214 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [2600/5005] eta: 0:20:56 lr: 0.0004 img/s: 489.42819036679475 loss: 0.8458 (0.8694) acc1: 69.9219 (68.6381) acc5: 86.7188 (86.9568) meanQV: 1.4895 (1.4802) stdQV: 0.3216 (0.3246) time: 0.5213 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [2700/5005] eta: 0:20:04 lr: 0.0004 img/s: 491.20055774275215 loss: 0.8641 (0.8696) acc1: 67.1875 (68.6336) acc5: 86.7188 (86.9582) meanQV: 1.4703 (1.4801) stdQV: 0.3277 (0.3246) time: 0.5221 data: 0.0004 max mem: 8962\n",
"Epoch: [2] [2800/5005] eta: 0:19:11 lr: 0.0004 img/s: 494.1210418244721 loss: 0.8495 (0.8697) acc1: 69.5312 (68.6488) acc5: 87.5000 (86.9604) meanQV: 1.4867 (1.4802) stdQV: 0.3228 (0.3246) time: 0.5220 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [2900/5005] eta: 0:18:19 lr: 0.0004 img/s: 491.0172647329166 loss: 0.8790 (0.8703) acc1: 68.3594 (68.6341) acc5: 86.7188 (86.9494) meanQV: 1.4785 (1.4801) stdQV: 0.3251 (0.3246) time: 0.5208 data: 0.0004 max mem: 8962\n",
"Epoch: [2] [3000/5005] eta: 0:17:27 lr: 0.0004 img/s: 485.94684164959335 loss: 0.8755 (0.8706) acc1: 68.3594 (68.6326) acc5: 87.5000 (86.9472) meanQV: 1.4785 (1.4801) stdQV: 0.3192 (0.3246) time: 0.5216 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [3100/5005] eta: 0:16:34 lr: 0.0004 img/s: 494.1287731247124 loss: 0.9319 (0.8717) acc1: 66.4062 (68.6098) acc5: 84.7656 (86.9271) meanQV: 1.4645 (1.4800) stdQV: 0.3303 (0.3247) time: 0.5206 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [3200/5005] eta: 0:15:42 lr: 0.0004 img/s: 489.1026970888204 loss: 0.8573 (0.8715) acc1: 67.1875 (68.6226) acc5: 87.1094 (86.9358) meanQV: 1.4699 (1.4801) stdQV: 0.3291 (0.3246) time: 0.5214 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [3300/5005] eta: 0:14:50 lr: 0.0004 img/s: 493.99282848070345 loss: 0.9075 (0.8719) acc1: 68.3594 (68.6160) acc5: 85.9375 (86.9377) meanQV: 1.4770 (1.4800) stdQV: 0.3257 (0.3247) time: 0.5221 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [3400/5005] eta: 0:13:58 lr: 0.0004 img/s: 491.0915987137075 loss: 0.8952 (0.8724) acc1: 67.1875 (68.6177) acc5: 87.5000 (86.9409) meanQV: 1.4688 (1.4800) stdQV: 0.3283 (0.3247) time: 0.5217 data: 0.0004 max mem: 8962\n",
"Epoch: [2] [3500/5005] eta: 0:13:05 lr: 0.0004 img/s: 491.85172372724526 loss: 0.8616 (0.8726) acc1: 67.9688 (68.6169) acc5: 87.5000 (86.9428) meanQV: 1.4758 (1.4800) stdQV: 0.3262 (0.3247) time: 0.5212 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [3600/5005] eta: 0:12:13 lr: 0.0004 img/s: 493.1658175040636 loss: 0.8484 (0.8728) acc1: 68.7500 (68.6238) acc5: 88.2812 (86.9481) meanQV: 1.4813 (1.4801) stdQV: 0.3237 (0.3246) time: 0.5210 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [3700/5005] eta: 0:11:21 lr: 0.0004 img/s: 488.61460107584765 loss: 0.8767 (0.8732) acc1: 67.9688 (68.6150) acc5: 86.7188 (86.9436) meanQV: 1.4758 (1.4800) stdQV: 0.3240 (0.3247) time: 0.5216 data: 0.0004 max mem: 8962\n",
"Epoch: [2] [3800/5005] eta: 0:10:29 lr: 0.0004 img/s: 494.11217386622536 loss: 0.8734 (0.8735) acc1: 66.7969 (68.6138) acc5: 86.3281 (86.9486) meanQV: 1.4676 (1.4800) stdQV: 0.3251 (0.3247) time: 0.5209 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [3900/5005] eta: 0:09:36 lr: 0.0004 img/s: 490.99728148911294 loss: 0.8477 (0.8733) acc1: 69.1406 (68.6243) acc5: 87.1094 (86.9573) meanQV: 1.4840 (1.4801) stdQV: 0.3240 (0.3246) time: 0.5215 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [4000/5005] eta: 0:08:44 lr: 0.0004 img/s: 491.4019783456549 loss: 0.8635 (0.8735) acc1: 68.7500 (68.6289) acc5: 87.5000 (86.9596) meanQV: 1.4813 (1.4801) stdQV: 0.3240 (0.3246) time: 0.5211 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [4100/5005] eta: 0:07:52 lr: 0.0004 img/s: 494.1733465144578 loss: 0.8801 (0.8738) acc1: 68.3594 (68.6256) acc5: 85.9375 (86.9581) meanQV: 1.4773 (1.4801) stdQV: 0.3228 (0.3246) time: 0.5216 data: 0.0004 max mem: 8962\n",
"Epoch: [2] [4200/5005] eta: 0:07:00 lr: 0.0004 img/s: 489.6234710977453 loss: 0.8273 (0.8740) acc1: 70.3125 (68.6327) acc5: 87.8906 (86.9577) meanQV: 1.4922 (1.4801) stdQV: 0.3190 (0.3246) time: 0.5215 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [4300/5005] eta: 0:06:08 lr: 0.0004 img/s: 494.2581946216013 loss: 0.8741 (0.8740) acc1: 68.7500 (68.6423) acc5: 87.5000 (86.9612) meanQV: 1.4813 (1.4802) stdQV: 0.3251 (0.3246) time: 0.5204 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [4400/5005] eta: 0:05:15 lr: 0.0004 img/s: 745.4293803117672 loss: 0.8636 (0.8744) acc1: 68.7500 (68.6341) acc5: 87.1094 (86.9601) meanQV: 1.4813 (1.4801) stdQV: 0.3240 (0.3246) time: 0.4351 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [4500/5005] eta: 0:04:21 lr: 0.0004 img/s: 486.88907097457 loss: 0.8677 (0.8746) acc1: 67.9688 (68.6392) acc5: 86.3281 (86.9591) meanQV: 1.4758 (1.4802) stdQV: 0.3262 (0.3246) time: 0.3115 data: 0.0013 max mem: 8962\n",
"Epoch: [2] [4600/5005] eta: 0:03:29 lr: 0.0004 img/s: 489.810640387527 loss: 0.8474 (0.8748) acc1: 68.7500 (68.6407) acc5: 86.7188 (86.9571) meanQV: 1.4813 (1.4802) stdQV: 0.3240 (0.3246) time: 0.5214 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [4700/5005] eta: 0:02:38 lr: 0.0004 img/s: 494.03101273102885 loss: 0.8843 (0.8749) acc1: 67.1875 (68.6427) acc5: 85.9375 (86.9571) meanQV: 1.4691 (1.4802) stdQV: 0.3270 (0.3246) time: 0.5212 data: 0.0004 max mem: 8962\n",
"Epoch: [2] [4800/5005] eta: 0:01:46 lr: 0.0004 img/s: 491.7528352428831 loss: 0.9494 (0.8752) acc1: 68.3594 (68.6450) acc5: 85.9375 (86.9551) meanQV: 1.4785 (1.4802) stdQV: 0.3251 (0.3246) time: 0.5206 data: 0.0003 max mem: 8962\n",
"Epoch: [2] [4900/5005] eta: 0:00:54 lr: 0.0004 img/s: 489.231282062264 loss: 0.8820 (0.8755) acc1: 67.1875 (68.6437) acc5: 85.9375 (86.9490) meanQV: 1.4691 (1.4802) stdQV: 0.3290 (0.3246) time: 0.5212 data: 0.0004 max mem: 8962\n",
"Epoch: [2] [5000/5005] eta: 0:00:02 lr: 0.0004 img/s: 489.3046302811125 loss: 0.8896 (0.8759) acc1: 68.3594 (68.6439) acc5: 86.7188 (86.9525) meanQV: 1.4785 (1.4802) stdQV: 0.3248 (0.3246) time: 0.5207 data: 0.0002 max mem: 8962\n",
"Epoch: [2] Total time: 0:43:15\n",
"Test: [ 0/6250] eta: 1:13:07 loss: 0.9734 (0.9734) acc1: 62.5000 (62.5000) acc5: 100.0000 (100.0000) time: 0.7020 data: 0.6951 max mem: 8962\n",
"Test: [ 100/6250] eta: 0:01:26 loss: 0.1843 (0.6218) acc1: 87.5000 (83.2921) acc5: 100.0000 (95.2970) time: 0.0060 data: 0.0006 max mem: 8962\n",
"Test: [ 200/6250] eta: 0:01:02 loss: 0.7251 (0.6534) acc1: 87.5000 (84.0174) acc5: 87.5000 (94.8383) time: 0.0060 data: 0.0005 max mem: 8962\n",
"Test: [ 300/6250] eta: 0:00:53 loss: 1.2929 (0.8644) acc1: 62.5000 (78.9037) acc5: 87.5000 (93.1894) time: 0.0062 data: 0.0005 max mem: 8962\n",
"Test: [ 400/6250] eta: 0:00:48 loss: 0.8992 (0.9909) acc1: 75.0000 (76.0910) acc5: 87.5000 (92.3005) time: 0.0060 data: 0.0004 max mem: 8962\n",
"Test: [ 500/6250] eta: 0:00:45 loss: 1.1745 (1.0423) acc1: 75.0000 (74.8503) acc5: 87.5000 (91.9661) time: 0.0065 data: 0.0010 max mem: 8962\n",
"Test: [ 600/6250] eta: 0:00:42 loss: 0.4571 (0.9501) acc1: 87.5000 (76.8095) acc5: 100.0000 (92.5957) time: 0.0061 data: 0.0005 max mem: 8962\n",
"Test: [ 700/6250] eta: 0:00:40 loss: 0.4039 (0.9331) acc1: 87.5000 (77.1220) acc5: 100.0000 (92.5820) time: 0.0057 data: 0.0006 max mem: 8962\n",
"Test: [ 800/6250] eta: 0:00:39 loss: 0.7346 (0.9629) acc1: 75.0000 (76.5605) acc5: 87.5000 (92.1660) time: 0.0058 data: 0.0006 max mem: 8962\n",
"Test: [ 900/6250] eta: 0:00:37 loss: 0.3460 (0.9073) acc1: 87.5000 (77.8857) acc5: 100.0000 (92.6609) time: 0.0059 data: 0.0005 max mem: 8962\n",
"Test: [1000/6250] eta: 0:00:36 loss: 0.8425 (0.8922) acc1: 75.0000 (78.1094) acc5: 100.0000 (92.8322) time: 0.0057 data: 0.0008 max mem: 8962\n",
"Test: [1100/6250] eta: 0:00:35 loss: 0.9796 (0.9278) acc1: 75.0000 (77.2252) acc5: 100.0000 (92.6544) time: 0.0073 data: 0.0016 max mem: 8962\n",
"Test: [1200/6250] eta: 0:00:34 loss: 1.1206 (0.9326) acc1: 75.0000 (76.8110) acc5: 87.5000 (92.7560) time: 0.0060 data: 0.0011 max mem: 8962\n",
"Test: [1300/6250] eta: 0:00:33 loss: 0.4536 (0.9371) acc1: 87.5000 (76.5661) acc5: 100.0000 (92.8997) time: 0.0059 data: 0.0005 max mem: 8962\n",
"Test: [1400/6250] eta: 0:00:32 loss: 0.7222 (0.9336) acc1: 75.0000 (76.6149) acc5: 87.5000 (92.9425) time: 0.0059 data: 0.0006 max mem: 8962\n",
"Test: [1500/6250] eta: 0:00:31 loss: 0.9426 (0.9376) acc1: 62.5000 (76.3658) acc5: 100.0000 (93.0213) time: 0.0057 data: 0.0005 max mem: 8962\n",
"Test: [1600/6250] eta: 0:00:30 loss: 0.1496 (0.9321) acc1: 100.0000 (76.2336) acc5: 100.0000 (93.1839) time: 0.0053 data: 0.0005 max mem: 8962\n",
"Test: [1700/6250] eta: 0:00:29 loss: 1.0775 (0.9295) acc1: 75.0000 (76.0802) acc5: 100.0000 (93.3128) time: 0.0051 data: 0.0006 max mem: 8962\n",
"Test: [1800/6250] eta: 0:00:29 loss: 1.1900 (0.9398) acc1: 62.5000 (75.8537) acc5: 87.5000 (93.2954) time: 0.0047 data: 0.0004 max mem: 8962\n",
"Test: [1900/6250] eta: 0:00:28 loss: 0.9377 (0.9324) acc1: 75.0000 (76.1376) acc5: 100.0000 (93.4179) time: 0.0056 data: 0.0005 max mem: 8962\n",
"Test: [2000/6250] eta: 0:00:27 loss: 0.4859 (0.9373) acc1: 87.5000 (76.0557) acc5: 100.0000 (93.4158) time: 0.0057 data: 0.0005 max mem: 8962\n",
"Test: [2100/6250] eta: 0:00:27 loss: 0.3588 (0.9185) acc1: 87.5000 (76.5826) acc5: 100.0000 (93.5745) time: 0.0059 data: 0.0004 max mem: 8962\n",
"Test: [2200/6250] eta: 0:00:26 loss: 0.1941 (0.9123) acc1: 87.5000 (76.7208) acc5: 100.0000 (93.6336) time: 0.0066 data: 0.0011 max mem: 8962\n",
"Test: [2300/6250] eta: 0:00:25 loss: 0.6498 (0.9137) acc1: 87.5000 (76.6949) acc5: 100.0000 (93.5952) time: 0.0052 data: 0.0008 max mem: 8962\n",
"Test: [2400/6250] eta: 0:00:25 loss: 0.9289 (0.9226) acc1: 75.0000 (76.5723) acc5: 87.5000 (93.5079) time: 0.0067 data: 0.0004 max mem: 8962\n",
"Test: [2500/6250] eta: 0:00:24 loss: 0.9120 (0.9237) acc1: 87.5000 (76.6593) acc5: 100.0000 (93.4726) time: 0.0054 data: 0.0004 max mem: 8962\n",
"Test: [2600/6250] eta: 0:00:23 loss: 2.2991 (0.9477) acc1: 50.0000 (76.1774) acc5: 62.5000 (93.1565) time: 0.0057 data: 0.0005 max mem: 8962\n",
"Test: [2700/6250] eta: 0:00:23 loss: 0.7023 (0.9584) acc1: 75.0000 (76.0089) acc5: 100.0000 (93.0442) time: 0.0061 data: 0.0007 max mem: 8962\n",
"Test: [2800/6250] eta: 0:00:22 loss: 1.6450 (0.9808) acc1: 62.5000 (75.5400) acc5: 87.5000 (92.7749) time: 0.0056 data: 0.0007 max mem: 8962\n",
"Test: [2900/6250] eta: 0:00:21 loss: 1.8880 (1.0003) acc1: 50.0000 (75.1034) acc5: 87.5000 (92.5414) time: 0.0057 data: 0.0005 max mem: 8962\n",
"Test: [3000/6250] eta: 0:00:21 loss: 2.2391 (1.0214) acc1: 50.0000 (74.7959) acc5: 75.0000 (92.2193) time: 0.0051 data: 0.0004 max mem: 8962\n",
"Test: [3100/6250] eta: 0:00:20 loss: 1.8099 (1.0473) acc1: 50.0000 (74.2785) acc5: 75.0000 (91.9502) time: 0.0058 data: 0.0006 max mem: 8962\n",
"Test: [3200/6250] eta: 0:00:19 loss: 0.7831 (1.0671) acc1: 62.5000 (73.8558) acc5: 100.0000 (91.7565) time: 0.0058 data: 0.0009 max mem: 8962\n",
"Test: [3300/6250] eta: 0:00:18 loss: 1.2720 (1.0789) acc1: 62.5000 (73.5497) acc5: 87.5000 (91.6540) time: 0.0060 data: 0.0010 max mem: 8962\n",
"Test: [3400/6250] eta: 0:00:18 loss: 2.3960 (1.0930) acc1: 37.5000 (73.2946) acc5: 75.0000 (91.4363) time: 0.0070 data: 0.0010 max mem: 8962\n",
"Test: [3500/6250] eta: 0:00:17 loss: 1.8152 (1.0998) acc1: 50.0000 (73.1612) acc5: 75.0000 (91.3203) time: 0.0075 data: 0.0021 max mem: 8962\n",
"Test: [3600/6250] eta: 0:00:17 loss: 0.4449 (1.0965) acc1: 87.5000 (73.3026) acc5: 100.0000 (91.3219) time: 0.0058 data: 0.0004 max mem: 8962\n",
"Test: [3700/6250] eta: 0:00:16 loss: 1.6940 (1.1099) acc1: 62.5000 (73.0276) acc5: 87.5000 (91.1477) time: 0.0131 data: 0.0075 max mem: 8962\n",
"Test: [3800/6250] eta: 0:00:15 loss: 0.7985 (1.1155) acc1: 87.5000 (72.9644) acc5: 87.5000 (91.0484) time: 0.0054 data: 0.0006 max mem: 8962\n",
"Test: [3900/6250] eta: 0:00:15 loss: 2.2583 (1.1305) acc1: 50.0000 (72.6833) acc5: 75.0000 (90.8293) time: 0.0053 data: 0.0004 max mem: 8962\n",
"Test: [4000/6250] eta: 0:00:14 loss: 1.4313 (1.1455) acc1: 62.5000 (72.4256) acc5: 87.5000 (90.6492) time: 0.0056 data: 0.0005 max mem: 8962\n",
"Test: [4100/6250] eta: 0:00:13 loss: 1.7358 (1.1560) acc1: 62.5000 (72.2507) acc5: 87.5000 (90.5389) time: 0.0056 data: 0.0004 max mem: 8962\n",
"Test: [4200/6250] eta: 0:00:13 loss: 0.4747 (1.1604) acc1: 87.5000 (72.1168) acc5: 100.0000 (90.5380) time: 0.0064 data: 0.0013 max mem: 8962\n",
"Test: [4300/6250] eta: 0:00:12 loss: 0.5343 (1.1704) acc1: 75.0000 (71.9513) acc5: 87.5000 (90.3743) time: 0.0054 data: 0.0004 max mem: 8962\n",
"Test: [4400/6250] eta: 0:00:11 loss: 0.8444 (1.1773) acc1: 75.0000 (71.7422) acc5: 100.0000 (90.3175) time: 0.0050 data: 0.0003 max mem: 8962\n",
"Test: [4500/6250] eta: 0:00:11 loss: 1.2144 (1.1832) acc1: 62.5000 (71.6119) acc5: 87.5000 (90.2744) time: 0.0060 data: 0.0006 max mem: 8962\n",
"Test: [4600/6250] eta: 0:00:10 loss: 1.7535 (1.1929) acc1: 50.0000 (71.4600) acc5: 87.5000 (90.1190) time: 0.0061 data: 0.0005 max mem: 8962\n",
"Test: [4700/6250] eta: 0:00:09 loss: 1.4817 (1.2036) acc1: 62.5000 (71.1498) acc5: 87.5000 (89.9702) time: 0.0050 data: 0.0006 max mem: 8962\n",
"Test: [4800/6250] eta: 0:00:09 loss: 1.3074 (1.2111) acc1: 62.5000 (71.0034) acc5: 87.5000 (89.8563) time: 0.0054 data: 0.0005 max mem: 8962\n",
"Test: [4900/6250] eta: 0:00:08 loss: 0.4546 (1.2157) acc1: 75.0000 (70.9090) acc5: 100.0000 (89.7852) time: 0.0053 data: 0.0006 max mem: 8962\n",
"Test: [5000/6250] eta: 0:00:07 loss: 2.0130 (1.2274) acc1: 62.5000 (70.7359) acc5: 75.0000 (89.6296) time: 0.0059 data: 0.0004 max mem: 8962\n",
"Test: [5100/6250] eta: 0:00:07 loss: 1.3178 (1.2327) acc1: 62.5000 (70.6136) acc5: 87.5000 (89.5903) time: 0.0061 data: 0.0005 max mem: 8962\n",
"Test: [5200/6250] eta: 0:00:06 loss: 1.0106 (1.2388) acc1: 75.0000 (70.5177) acc5: 87.5000 (89.5236) time: 0.0052 data: 0.0004 max mem: 8962\n",
"Test: [5300/6250] eta: 0:00:05 loss: 1.5488 (1.2526) acc1: 62.5000 (70.2297) acc5: 87.5000 (89.3298) time: 0.0053 data: 0.0005 max mem: 8962\n",
"Test: [5400/6250] eta: 0:00:05 loss: 0.8032 (1.2557) acc1: 75.0000 (70.1768) acc5: 87.5000 (89.2728) time: 0.0058 data: 0.0004 max mem: 8962\n",
"Test: [5500/6250] eta: 0:00:04 loss: 0.8721 (1.2595) acc1: 75.0000 (70.0827) acc5: 87.5000 (89.2201) time: 0.0061 data: 0.0006 max mem: 8962\n",
"Test: [5600/6250] eta: 0:00:04 loss: 1.0362 (1.2646) acc1: 62.5000 (70.0009) acc5: 87.5000 (89.1269) time: 0.0053 data: 0.0004 max mem: 8962\n",
"Test: [5700/6250] eta: 0:00:03 loss: 2.2192 (1.2800) acc1: 37.5000 (69.7049) acc5: 75.0000 (88.9756) time: 0.0052 data: 0.0005 max mem: 8962\n",
"Test: [5800/6250] eta: 0:00:02 loss: 0.5529 (1.2755) acc1: 75.0000 (69.7897) acc5: 100.0000 (89.0321) time: 0.0052 data: 0.0005 max mem: 8962\n",
"Test: [5900/6250] eta: 0:00:02 loss: 1.1504 (1.2730) acc1: 75.0000 (69.8187) acc5: 87.5000 (89.0612) time: 0.0059 data: 0.0006 max mem: 8962\n",
"Test: [6000/6250] eta: 0:00:01 loss: 0.5121 (1.2652) acc1: 87.5000 (69.9779) acc5: 87.5000 (89.1518) time: 0.0060 data: 0.0005 max mem: 8962\n",
"Test: [6100/6250] eta: 0:00:00 loss: 1.3071 (1.2734) acc1: 62.5000 (69.7959) acc5: 87.5000 (89.0407) time: 0.0048 data: 0.0004 max mem: 8962\n",
"Test: [6200/6250] eta: 0:00:00 loss: 0.2227 (1.2671) acc1: 100.0000 (69.9161) acc5: 100.0000 (89.1207) time: 0.0062 data: 0.0005 max mem: 8962\n",
"Test: Total time: 0:00:38\n",
"Test: Acc@1 69.952 Acc@5 89.136\n",
"Epoch: [3] [ 0/5005] eta: 5:49:16 lr: 0.0002 img/s: 494.13332106139956 loss: 0.8680 (0.8680) acc1: 68.3594 (68.3594) acc5: 87.8906 (87.8906) meanQV: 1.4785 (1.4785) stdQV: 0.3262 (0.3262) time: 4.1871 data: 3.6690 max mem: 8962\n",
"Epoch: [3] [ 100/5005] eta: 0:45:34 lr: 0.0002 img/s: 493.44095322259034 loss: 0.8700 (0.8771) acc1: 69.5312 (68.9124) acc5: 87.1094 (87.1906) meanQV: 1.4867 (1.4820) stdQV: 0.3216 (0.3238) time: 0.5208 data: 0.0004 max mem: 8962\n",
"Epoch: [3] [ 200/5005] eta: 0:43:11 lr: 0.0002 img/s: 491.6118921765009 loss: 0.8557 (0.8772) acc1: 69.1406 (69.1056) acc5: 87.1094 (87.0666) meanQV: 1.4840 (1.4834) stdQV: 0.3228 (0.3233) time: 0.5215 data: 0.0003 max mem: 8962\n",
"Epoch: [3] [ 300/5005] eta: 0:41:50 lr: 0.0002 img/s: 488.24378408069873 loss: 0.8735 (0.8765) acc1: 68.3594 (69.1173) acc5: 87.1094 (87.2859) meanQV: 1.4773 (1.4834) stdQV: 0.3259 (0.3233) time: 0.5215 data: 0.0003 max mem: 8962\n",
"Epoch: [3] [ 400/5005] eta: 0:40:42 lr: 0.0002 img/s: 491.1491050840666 loss: 0.8561 (0.8749) acc1: 69.1406 (69.1338) acc5: 87.1094 (87.3091) meanQV: 1.4816 (1.4835) stdQV: 0.3235 (0.3232) time: 0.5215 data: 0.0004 max mem: 8962\n",
"Epoch: [3] [ 500/5005] eta: 0:39:40 lr: 0.0002 img/s: 494.98206480200105 loss: 0.8668 (0.8747) acc1: 68.3594 (69.2046) acc5: 87.5000 (87.3082) meanQV: 1.4785 (1.4840) stdQV: 0.3228 (0.3230) time: 0.5210 data: 0.0003 max mem: 8962\n",
"Epoch: [3] [ 600/5005] eta: 0:38:42 lr: 0.0002 img/s: 492.9600064641953 loss: 0.8776 (0.8775) acc1: 69.1406 (69.1595) acc5: 87.5000 (87.2979) meanQV: 1.4840 (1.4837) stdQV: 0.3226 (0.3231) time: 0.5206 data: 0.0004 max mem: 8962\n",
"Epoch: [3] [ 700/5005] eta: 0:37:46 lr: 0.0002 img/s: 488.8984818192125 loss: 0.8980 (0.8788) acc1: 69.1406 (69.1512) acc5: 86.3281 (87.2465) meanQV: 1.4836 (1.4837) stdQV: 0.3228 (0.3231) time: 0.5213 data: 0.0003 max mem: 8962\n",
"Epoch: [3] [ 800/5005] eta: 0:36:50 lr: 0.0002 img/s: 489.088661574488 loss: 0.8472 (0.8815) acc1: 68.7500 (69.0777) acc5: 86.7188 (87.1776) meanQV: 1.4801 (1.4831) stdQV: 0.3248 (0.3233) time: 0.5208 data: 0.0003 max mem: 8962\n",
"Epoch: [3] [ 900/5005] eta: 0:35:56 lr: 0.0002 img/s: 491.4127733969181 loss: 0.8806 (0.8807) acc1: 68.3594 (69.0921) acc5: 86.7188 (87.1657) meanQV: 1.4762 (1.4832) stdQV: 0.3262 (0.3233) time: 0.5213 data: 0.0004 max mem: 8962\n",
"Epoch: [3] [1000/5005] eta: 0:35:01 lr: 0.0002 img/s: 491.22662521193246 loss: 0.9323 (0.8815) acc1: 67.9688 (69.0762) acc5: 86.7188 (87.1488) meanQV: 1.4758 (1.4831) stdQV: 0.3273 (0.3233) time: 0.5216 data: 0.0003 max mem: 8962\n",
"Epoch: [3] [1100/5005] eta: 0:34:08 lr: 0.0002 img/s: 490.98717822090043 loss: 0.8727 (0.8828) acc1: 69.1406 (69.0541) acc5: 87.5000 (87.1292) meanQV: 1.4828 (1.4830) stdQV: 0.3237 (0.3234) time: 0.5207 data: 0.0003 max mem: 8962\n",
"Epoch: [3] [1200/5005] eta: 0:33:14 lr: 0.0002 img/s: 489.31912417248043 loss: 0.8732 (0.8839) acc1: 68.7500 (69.0385) acc5: 86.3281 (87.0990) meanQV: 1.4801 (1.4829) stdQV: 0.3248 (0.3234) time: 0.5208 data: 0.0004 max mem: 8962\n",
"Epoch: [3] [1300/5005] eta: 0:32:21 lr: 0.0002 img/s: 488.60570732215643 loss: 0.8841 (0.8833) acc1: 69.1406 (69.0139) acc5: 87.1094 (87.1034) meanQV: 1.4840 (1.4827) stdQV: 0.3228 (0.3235) time: 0.5211 data: 0.0004 max mem: 8962\n",
"Epoch: [3] [1400/5005] eta: 0:31:27 lr: 0.0002 img/s: 489.7130175490766 loss: 0.8099 (0.8833) acc1: 69.9219 (69.0252) acc5: 87.1094 (87.0971) meanQV: 1.4895 (1.4828) stdQV: 0.3188 (0.3235) time: 0.5214 data: 0.0003 max mem: 8962\n",
"Epoch: [3] [1500/5005] eta: 0:30:35 lr: 0.0002 img/s: 490.8552003847328 loss: 0.8780 (0.8834) acc1: 69.1406 (69.0147) acc5: 86.7188 (87.0748) meanQV: 1.4840 (1.4827) stdQV: 0.3228 (0.3235) time: 0.5206 data: 0.0003 max mem: 8962\n",
"Epoch: [3] [1600/5005] eta: 0:29:42 lr: 0.0002 img/s: 492.7211280428486 loss: 0.9144 (0.8839) acc1: 69.1406 (69.0086) acc5: 86.7188 (87.0847) meanQV: 1.4828 (1.4827) stdQV: 0.3237 (0.3235) time: 0.5212 data: 0.0003 max mem: 8962\n",
"Epoch: [3] [1700/5005] eta: 0:28:49 lr: 0.0002 img/s: 494.0639741221239 loss: 0.8737 (0.8834) acc1: 69.5312 (69.0187) acc5: 86.3281 (87.0809) meanQV: 1.4867 (1.4827) stdQV: 0.3228 (0.3235) time: 0.5216 data: 0.0004 max mem: 8962\n",
"Epoch: [3] [1800/5005] eta: 0:27:56 lr: 0.0002 img/s: 494.14514608859565 loss: 0.9103 (0.8836) acc1: 67.5781 (69.0094) acc5: 87.1094 (87.0679) meanQV: 1.4730 (1.4827) stdQV: 0.3283 (0.3235) time: 0.5212 data: 0.0004 max mem: 8962\n",
"Epoch: [3] [1900/5005] eta: 0:27:04 lr: 0.0002 img/s: 488.1301411462633 loss: 0.8608 (0.8841) acc1: 69.1406 (68.9943) acc5: 86.7188 (87.0798) meanQV: 1.4840 (1.4826) stdQV: 0.3228 (0.3236) time: 0.5210 data: 0.0004 max mem: 8962\n",
"Epoch: [3] [2000/5005] eta: 0:26:11 lr: 0.0002 img/s: 493.9826015587656 loss: 0.9005 (0.8840) acc1: 69.1406 (69.0001) acc5: 87.1094 (87.0899) meanQV: 1.4840 (1.4826) stdQV: 0.3216 (0.3236) time: 0.5209 data: 0.0003 max mem: 8962\n",
"Epoch: [3] [2100/5005] eta: 0:25:18 lr: 0.0002 img/s: 491.0731815518808 loss: 0.8610 (0.8835) acc1: 70.7031 (69.0287) acc5: 87.8906 (87.0908) meanQV: 1.4949 (1.4828) stdQV: 0.3180 (0.3235) time: 0.5210 data: 0.0005 max mem: 8962\n",
"Epoch: [3] [2200/5005] eta: 0:24:26 lr: 0.0002 img/s: 486.65824433670525 loss: 0.8879 (0.8840) acc1: 67.1875 (69.0139) acc5: 87.1094 (87.0943) meanQV: 1.4703 (1.4827) stdQV: 0.3262 (0.3235) time: 0.5212 data: 0.0004 max mem: 8962\n",
"Epoch: [3] [2300/5005] eta: 0:23:33 lr: 0.0002 img/s: 489.28055002159914 loss: 0.8677 (0.8844) acc1: 69.1406 (69.0091) acc5: 88.6719 (87.0997) meanQV: 1.4840 (1.4826) stdQV: 0.3192 (0.3235) time: 0.5220 data: 0.0004 max mem: 8962\n",
"Epoch: [3] [2400/5005] eta: 0:22:41 lr: 0.0002 img/s: 489.7322262906224 loss: 0.8478 (0.8846) acc1: 69.5312 (68.9997) acc5: 88.2812 (87.0944) meanQV: 1.4867 (1.4826) stdQV: 0.3226 (0.3236) time: 0.5206 data: 0.0003 max mem: 8962\n",
"Epoch: [3] [2500/5005] eta: 0:21:49 lr: 0.0002 img/s: 494.49583330838766 loss: 0.9224 (0.8849) acc1: 68.7500 (68.9983) acc5: 86.3281 (87.0841) meanQV: 1.4813 (1.4826) stdQV: 0.3240 (0.3236) time: 0.5211 data: 0.0003 max mem: 8962\n",
"Epoch: [3] [2600/5005] eta: 0:20:56 lr: 0.0002 img/s: 491.60829085668 loss: 0.8767 (0.8851) acc1: 69.9219 (69.0107) acc5: 87.8906 (87.0868) meanQV: 1.4883 (1.4826) stdQV: 0.3214 (0.3235) time: 0.5205 data: 0.0004 max mem: 8962\n",
"Epoch: [3] [2700/5005] eta: 0:20:04 lr: 0.0002 img/s: 494.5233905012099 loss: 0.8684 (0.8851) acc1: 69.5312 (69.0087) acc5: 87.5000 (87.0942) meanQV: 1.4855 (1.4826) stdQV: 0.3216 (0.3235) time: 0.5203 data: 0.0004 max mem: 8962\n",
"Epoch: [3] [2800/5005] eta: 0:19:11 lr: 0.0002 img/s: 491.0152438815262 loss: 0.9061 (0.8855) acc1: 69.1406 (68.9994) acc5: 86.7188 (87.0876) meanQV: 1.4840 (1.4826) stdQV: 0.3228 (0.3236) time: 0.5209 data: 0.0003 max mem: 8962\n",
"Epoch: [3] [2900/5005] eta: 0:18:19 lr: 0.0002 img/s: 490.7789190394875 loss: 0.8594 (0.8853) acc1: 69.1406 (68.9987) acc5: 87.5000 (87.0913) meanQV: 1.4820 (1.4826) stdQV: 0.3215 (0.3236) time: 0.5220 data: 0.0003 max mem: 8962\n",
"Epoch: [3] [3000/5005] eta: 0:17:27 lr: 0.0002 img/s: 490.72441483952787 loss: 0.8432 (0.8854) acc1: 69.5312 (68.9989) acc5: 87.8906 (87.0884) meanQV: 1.4867 (1.4826) stdQV: 0.3202 (0.3236) time: 0.5214 data: 0.0004 max mem: 8962\n",
"Epoch: [3] [3100/5005] eta: 0:16:34 lr: 0.0002 img/s: 491.1839299405131 loss: 0.8755 (0.8852) acc1: 70.3125 (69.0101) acc5: 87.5000 (87.0990) meanQV: 1.4898 (1.4826) stdQV: 0.3192 (0.3235) time: 0.5210 data: 0.0004 max mem: 8962\n",
"Epoch: [3] [3200/5005] eta: 0:15:42 lr: 0.0002 img/s: 491.87718437506726 loss: 0.8693 (0.8855) acc1: 69.5312 (69.0059) acc5: 86.3281 (87.0879) meanQV: 1.4863 (1.4826) stdQV: 0.3216 (0.3235) time: 0.5207 data: 0.0004 max mem: 8962\n",
"Epoch: [3] [3300/5005] eta: 0:14:50 lr: 0.0002 img/s: 489.23663194863695 loss: 0.8853 (0.8859) acc1: 69.9219 (69.0043) acc5: 85.9375 (87.0807) meanQV: 1.4871 (1.4826) stdQV: 0.3202 (0.3235) time: 0.5208 data: 0.0004 max mem: 8962\n",
"Epoch: [3] [3400/5005] eta: 0:13:58 lr: 0.0002 img/s: 487.7279331806508 loss: 0.8678 (0.8862) acc1: 68.3594 (68.9936) acc5: 86.3281 (87.0718) meanQV: 1.4785 (1.4825) stdQV: 0.3262 (0.3236) time: 0.5219 data: 0.0004 max mem: 8962\n",
"Epoch: [3] [3500/5005] eta: 0:13:05 lr: 0.0002 img/s: 492.66031437817423 loss: 0.8921 (0.8862) acc1: 68.3594 (68.9935) acc5: 86.3281 (87.0740) meanQV: 1.4781 (1.4825) stdQV: 0.3260 (0.3236) time: 0.5205 data: 0.0003 max mem: 8962\n",
"Epoch: [3] [3600/5005] eta: 0:12:13 lr: 0.0002 img/s: 491.45280918624405 loss: 0.8688 (0.8865) acc1: 69.5312 (68.9917) acc5: 87.1094 (87.0669) meanQV: 1.4855 (1.4825) stdQV: 0.3226 (0.3236) time: 0.5213 data: 0.0003 max mem: 8962\n",
"Epoch: [3] [3700/5005] eta: 0:11:21 lr: 0.0002 img/s: 491.6204455225456 loss: 0.8652 (0.8867) acc1: 68.3594 (68.9841) acc5: 86.3281 (87.0616) meanQV: 1.4773 (1.4824) stdQV: 0.3262 (0.3236) time: 0.5209 data: 0.0003 max mem: 8962\n",
"Epoch: [3] [3800/5005] eta: 0:10:29 lr: 0.0002 img/s: 487.71309034173106 loss: 0.8378 (0.8872) acc1: 69.1406 (68.9696) acc5: 86.7188 (87.0521) meanQV: 1.4840 (1.4823) stdQV: 0.3228 (0.3236) time: 0.5206 data: 0.0004 max mem: 8962\n",
"Epoch: [3] [3900/5005] eta: 0:09:36 lr: 0.0002 img/s: 493.498784340653 loss: 0.9257 (0.8877) acc1: 68.3594 (68.9631) acc5: 87.1094 (87.0480) meanQV: 1.4785 (1.4823) stdQV: 0.3240 (0.3237) time: 0.5218 data: 0.0003 max mem: 8962\n",
"Epoch: [3] [4000/5005] eta: 0:08:44 lr: 0.0002 img/s: 494.29778520681486 loss: 0.8728 (0.8877) acc1: 68.3594 (68.9672) acc5: 87.5000 (87.0530) meanQV: 1.4785 (1.4823) stdQV: 0.3240 (0.3236) time: 0.5206 data: 0.0003 max mem: 8962\n",
"Epoch: [3] [4100/5005] eta: 0:07:52 lr: 0.0002 img/s: 491.56395393020676 loss: 0.9223 (0.8879) acc1: 68.7500 (68.9693) acc5: 86.7188 (87.0528) meanQV: 1.4789 (1.4823) stdQV: 0.3249 (0.3236) time: 0.5214 data: 0.0003 max mem: 8962\n",
"Epoch: [3] [4200/5005] eta: 0:07:00 lr: 0.0002 img/s: 489.26494371188943 loss: 0.8813 (0.8883) acc1: 67.5781 (68.9555) acc5: 86.3281 (87.0487) meanQV: 1.4730 (1.4822) stdQV: 0.3273 (0.3237) time: 0.5211 data: 0.0003 max mem: 8962\n",
"Epoch: [3] [4300/5005] eta: 0:06:07 lr: 0.0002 img/s: 493.6955115781962 loss: 0.8671 (0.8883) acc1: 70.7031 (68.9589) acc5: 86.3281 (87.0572) meanQV: 1.4949 (1.4823) stdQV: 0.3192 (0.3237) time: 0.5204 data: 0.0003 max mem: 8962\n",
"Epoch: [3] [4400/5005] eta: 0:05:15 lr: 0.0002 img/s: 493.47927899772964 loss: 0.9207 (0.8885) acc1: 68.3594 (68.9580) acc5: 85.9375 (87.0487) meanQV: 1.4785 (1.4823) stdQV: 0.3262 (0.3237) time: 0.5198 data: 0.0003 max mem: 8962\n",
"Epoch: [3] [4500/5005] eta: 0:04:23 lr: 0.0002 img/s: 492.8457412066241 loss: 0.8825 (0.8885) acc1: 69.5312 (68.9623) acc5: 87.1094 (87.0524) meanQV: 1.4867 (1.4823) stdQV: 0.3228 (0.3237) time: 0.5207 data: 0.0004 max mem: 8962\n",
"Epoch: [3] [4600/5005] eta: 0:03:31 lr: 0.0002 img/s: 491.5558526149826 loss: 0.8631 (0.8888) acc1: 68.7500 (68.9587) acc5: 86.7188 (87.0511) meanQV: 1.4813 (1.4823) stdQV: 0.3240 (0.3237) time: 0.5209 data: 0.0003 max mem: 8962\n",
"Epoch: [3] [4700/5005] eta: 0:02:39 lr: 0.0002 img/s: 491.1044017010751 loss: 0.9060 (0.8890) acc1: 67.9688 (68.9607) acc5: 86.7188 (87.0516) meanQV: 1.4754 (1.4823) stdQV: 0.3262 (0.3237) time: 0.5205 data: 0.0003 max mem: 8962\n",
"Epoch: [3] [4800/5005] eta: 0:01:46 lr: 0.0002 img/s: 488.3679195209023 loss: 0.8826 (0.8891) acc1: 70.3125 (68.9605) acc5: 87.5000 (87.0509) meanQV: 1.4922 (1.4823) stdQV: 0.3204 (0.3237) time: 0.5207 data: 0.0003 max mem: 8962\n",
"Epoch: [3] [4900/5005] eta: 0:00:54 lr: 0.0002 img/s: 657.254661723217 loss: 0.8709 (0.8890) acc1: 69.1406 (68.9624) acc5: 87.1094 (87.0525) meanQV: 1.4840 (1.4823) stdQV: 0.3208 (0.3237) time: 0.3795 data: 0.0027 max mem: 8962\n",
"Epoch: [3] [5000/5005] eta: 0:00:02 lr: 0.0002 img/s: 489.617889485732 loss: 0.8860 (0.8894) acc1: 67.5781 (68.9478) acc5: 86.3281 (87.0502) meanQV: 1.4730 (1.4822) stdQV: 0.3259 (0.3237) time: 0.5212 data: 0.0002 max mem: 8962\n",
"Epoch: [3] Total time: 0:43:15\n",
"Test: [ 0/6250] eta: 1:13:37 loss: 0.8178 (0.8178) acc1: 62.5000 (62.5000) acc5: 100.0000 (100.0000) time: 0.7068 data: 0.7000 max mem: 8962\n",
"Test: [ 100/6250] eta: 0:01:28 loss: 0.1440 (0.6006) acc1: 87.5000 (83.4158) acc5: 100.0000 (95.4208) time: 0.0070 data: 0.0009 max mem: 8962\n",
"Test: [ 200/6250] eta: 0:01:06 loss: 0.6774 (0.6502) acc1: 87.5000 (84.2040) acc5: 100.0000 (94.8383) time: 0.0073 data: 0.0006 max mem: 8962\n",
"Test: [ 300/6250] eta: 0:00:56 loss: 1.2668 (0.8598) acc1: 62.5000 (79.2774) acc5: 87.5000 (93.1478) time: 0.0066 data: 0.0007 max mem: 8962\n",
"Test: [ 400/6250] eta: 0:00:51 loss: 0.8958 (0.9858) acc1: 75.0000 (76.1845) acc5: 100.0000 (92.2693) time: 0.0062 data: 0.0008 max mem: 8962\n",
"Test: [ 500/6250] eta: 0:00:48 loss: 1.1632 (1.0374) acc1: 75.0000 (74.9002) acc5: 87.5000 (91.9411) time: 0.0061 data: 0.0007 max mem: 8962\n",
"Test: [ 600/6250] eta: 0:00:45 loss: 0.3993 (0.9455) acc1: 87.5000 (76.9343) acc5: 100.0000 (92.6165) time: 0.0064 data: 0.0006 max mem: 8962\n",
"Test: [ 700/6250] eta: 0:00:43 loss: 0.4326 (0.9321) acc1: 87.5000 (77.1576) acc5: 100.0000 (92.6712) time: 0.0067 data: 0.0006 max mem: 8962\n",
"Test: [ 800/6250] eta: 0:00:42 loss: 0.8489 (0.9613) acc1: 75.0000 (76.5918) acc5: 87.5000 (92.2441) time: 0.0066 data: 0.0008 max mem: 8962\n",
"Test: [ 900/6250] eta: 0:00:41 loss: 0.3832 (0.9033) acc1: 87.5000 (77.9550) acc5: 100.0000 (92.7303) time: 0.0068 data: 0.0005 max mem: 8962\n",
"Test: [1000/6250] eta: 0:00:39 loss: 0.9345 (0.8886) acc1: 75.0000 (78.1094) acc5: 100.0000 (92.9196) time: 0.0061 data: 0.0009 max mem: 8962\n",
"Test: [1100/6250] eta: 0:00:38 loss: 1.0317 (0.9263) acc1: 75.0000 (77.0777) acc5: 100.0000 (92.7679) time: 0.0071 data: 0.0008 max mem: 8962\n",
"Test: [1200/6250] eta: 0:00:37 loss: 1.0881 (0.9341) acc1: 75.0000 (76.5820) acc5: 87.5000 (92.8393) time: 0.0069 data: 0.0007 max mem: 8962\n",
"Test: [1300/6250] eta: 0:00:36 loss: 0.4206 (0.9358) acc1: 75.0000 (76.3259) acc5: 100.0000 (93.0150) time: 0.0074 data: 0.0009 max mem: 8962\n",
"Test: [1400/6250] eta: 0:00:35 loss: 0.8187 (0.9322) acc1: 75.0000 (76.4632) acc5: 87.5000 (93.0496) time: 0.0061 data: 0.0009 max mem: 8962\n",
"Test: [1500/6250] eta: 0:00:34 loss: 0.8115 (0.9372) acc1: 75.0000 (76.2408) acc5: 100.0000 (93.1379) time: 0.0061 data: 0.0006 max mem: 8962\n",
"Test: [1600/6250] eta: 0:00:33 loss: 0.1571 (0.9323) acc1: 100.0000 (76.1165) acc5: 100.0000 (93.2933) time: 0.0064 data: 0.0006 max mem: 8962\n",
"Test: [1700/6250] eta: 0:00:32 loss: 0.9674 (0.9303) acc1: 75.0000 (76.0068) acc5: 100.0000 (93.3936) time: 0.0071 data: 0.0007 max mem: 8962\n",
"Test: [1800/6250] eta: 0:00:32 loss: 1.2235 (0.9404) acc1: 62.5000 (75.7843) acc5: 87.5000 (93.3717) time: 0.0083 data: 0.0008 max mem: 8962\n",
"Test: [1900/6250] eta: 0:00:31 loss: 1.0283 (0.9336) acc1: 62.5000 (76.0652) acc5: 100.0000 (93.4903) time: 0.0054 data: 0.0006 max mem: 8962\n",
"Test: [2000/6250] eta: 0:00:30 loss: 0.4590 (0.9386) acc1: 87.5000 (76.0057) acc5: 100.0000 (93.4533) time: 0.0056 data: 0.0009 max mem: 8962\n",
"Test: [2100/6250] eta: 0:00:29 loss: 0.3773 (0.9199) acc1: 87.5000 (76.5469) acc5: 100.0000 (93.6042) time: 0.0062 data: 0.0007 max mem: 8962\n",
"Test: [2200/6250] eta: 0:00:28 loss: 0.2202 (0.9123) acc1: 87.5000 (76.7208) acc5: 100.0000 (93.6733) time: 0.0054 data: 0.0006 max mem: 8962\n",
"Test: [2300/6250] eta: 0:00:27 loss: 0.6553 (0.9135) acc1: 87.5000 (76.7058) acc5: 100.0000 (93.6821) time: 0.0067 data: 0.0020 max mem: 8962\n",
"Test: [2400/6250] eta: 0:00:27 loss: 0.8205 (0.9230) acc1: 75.0000 (76.5775) acc5: 87.5000 (93.5964) time: 0.0078 data: 0.0017 max mem: 8962\n",
"Test: [2500/6250] eta: 0:00:26 loss: 0.7730 (0.9230) acc1: 87.5000 (76.6693) acc5: 100.0000 (93.5726) time: 0.0055 data: 0.0006 max mem: 8962\n",
"Test: [2600/6250] eta: 0:00:25 loss: 2.1682 (0.9463) acc1: 50.0000 (76.2351) acc5: 75.0000 (93.2526) time: 0.0053 data: 0.0004 max mem: 8962\n",
"Test: [2700/6250] eta: 0:00:24 loss: 0.8635 (0.9574) acc1: 75.0000 (76.0459) acc5: 87.5000 (93.1137) time: 0.0055 data: 0.0005 max mem: 8962\n",
"Test: [2800/6250] eta: 0:00:23 loss: 1.4083 (0.9782) acc1: 62.5000 (75.6025) acc5: 87.5000 (92.8865) time: 0.0055 data: 0.0004 max mem: 8962\n",
"Test: [2900/6250] eta: 0:00:22 loss: 1.8681 (0.9967) acc1: 37.5000 (75.2025) acc5: 87.5000 (92.6706) time: 0.0063 data: 0.0009 max mem: 8962\n",
"Test: [3000/6250] eta: 0:00:22 loss: 2.3759 (1.0186) acc1: 50.0000 (74.8542) acc5: 75.0000 (92.3484) time: 0.0055 data: 0.0006 max mem: 8962\n",
"Test: [3100/6250] eta: 0:00:21 loss: 1.6813 (1.0453) acc1: 50.0000 (74.2986) acc5: 75.0000 (92.0872) time: 0.0058 data: 0.0007 max mem: 8962\n",
"Test: [3200/6250] eta: 0:00:20 loss: 0.7106 (1.0641) acc1: 62.5000 (73.9261) acc5: 100.0000 (91.8658) time: 0.0050 data: 0.0004 max mem: 8962\n",
"Test: [3300/6250] eta: 0:00:19 loss: 1.2310 (1.0768) acc1: 62.5000 (73.5800) acc5: 87.5000 (91.7487) time: 0.0060 data: 0.0005 max mem: 8962\n",
"Test: [3400/6250] eta: 0:00:19 loss: 2.4905 (1.0913) acc1: 50.0000 (73.3203) acc5: 75.0000 (91.5466) time: 0.0059 data: 0.0005 max mem: 8962\n",
"Test: [3500/6250] eta: 0:00:18 loss: 1.7458 (1.0984) acc1: 50.0000 (73.2112) acc5: 87.5000 (91.4310) time: 0.0060 data: 0.0007 max mem: 8962\n",
"Test: [3600/6250] eta: 0:00:17 loss: 0.4052 (1.0948) acc1: 87.5000 (73.3477) acc5: 100.0000 (91.4295) time: 0.0060 data: 0.0008 max mem: 8962\n",
"Test: [3700/6250] eta: 0:00:16 loss: 1.7100 (1.1095) acc1: 62.5000 (73.0444) acc5: 87.5000 (91.2456) time: 0.0104 data: 0.0052 max mem: 8962\n",
"Test: [3800/6250] eta: 0:00:16 loss: 0.7023 (1.1154) acc1: 87.5000 (72.9742) acc5: 87.5000 (91.1471) time: 0.0053 data: 0.0005 max mem: 8962\n",
"Test: [3900/6250] eta: 0:00:15 loss: 2.4000 (1.1317) acc1: 37.5000 (72.6609) acc5: 75.0000 (90.9382) time: 0.0053 data: 0.0005 max mem: 8962\n",
"Test: [4000/6250] eta: 0:00:14 loss: 1.5344 (1.1465) acc1: 62.5000 (72.3882) acc5: 87.5000 (90.7523) time: 0.0056 data: 0.0006 max mem: 8962\n",
"Test: [4100/6250] eta: 0:00:14 loss: 1.4738 (1.1567) acc1: 62.5000 (72.2171) acc5: 87.5000 (90.6364) time: 0.0052 data: 0.0004 max mem: 8962\n",
"Test: [4200/6250] eta: 0:00:13 loss: 0.3974 (1.1608) acc1: 87.5000 (72.0930) acc5: 100.0000 (90.6362) time: 0.0068 data: 0.0005 max mem: 8962\n",
"Test: [4300/6250] eta: 0:00:12 loss: 0.4784 (1.1701) acc1: 75.0000 (71.9542) acc5: 100.0000 (90.4935) time: 0.0052 data: 0.0006 max mem: 8962\n",
"Test: [4400/6250] eta: 0:00:12 loss: 0.9728 (1.1769) acc1: 75.0000 (71.7763) acc5: 100.0000 (90.4368) time: 0.0052 data: 0.0005 max mem: 8962\n",
"Test: [4500/6250] eta: 0:00:11 loss: 1.1849 (1.1823) acc1: 75.0000 (71.6785) acc5: 87.5000 (90.3855) time: 0.0058 data: 0.0004 max mem: 8962\n",
"Test: [4600/6250] eta: 0:00:10 loss: 1.6483 (1.1923) acc1: 50.0000 (71.5116) acc5: 87.5000 (90.2413) time: 0.0056 data: 0.0007 max mem: 8962\n",
"Test: [4700/6250] eta: 0:00:10 loss: 1.3664 (1.2023) acc1: 62.5000 (71.2189) acc5: 87.5000 (90.1032) time: 0.0055 data: 0.0007 max mem: 8962\n",
"Test: [4800/6250] eta: 0:00:09 loss: 1.3209 (1.2095) acc1: 62.5000 (71.0841) acc5: 87.5000 (89.9969) time: 0.0051 data: 0.0008 max mem: 8962\n",
"Test: [4900/6250] eta: 0:00:08 loss: 0.4727 (1.2146) acc1: 87.5000 (71.0161) acc5: 100.0000 (89.9077) time: 0.0049 data: 0.0004 max mem: 8962\n",
"Test: [5000/6250] eta: 0:00:08 loss: 2.0785 (1.2263) acc1: 62.5000 (70.8483) acc5: 75.0000 (89.7520) time: 0.0054 data: 0.0005 max mem: 8962\n",
"Test: [5100/6250] eta: 0:00:07 loss: 1.2702 (1.2315) acc1: 62.5000 (70.7410) acc5: 87.5000 (89.7153) time: 0.0059 data: 0.0007 max mem: 8962\n",
"Test: [5200/6250] eta: 0:00:06 loss: 1.0106 (1.2380) acc1: 75.0000 (70.6138) acc5: 87.5000 (89.6510) time: 0.0047 data: 0.0004 max mem: 8962\n",
"Test: [5300/6250] eta: 0:00:06 loss: 1.4912 (1.2517) acc1: 50.0000 (70.3122) acc5: 87.5000 (89.4619) time: 0.0056 data: 0.0005 max mem: 8962\n",
"Test: [5400/6250] eta: 0:00:05 loss: 0.9010 (1.2548) acc1: 75.0000 (70.2671) acc5: 100.0000 (89.4071) time: 0.0057 data: 0.0006 max mem: 8962\n",
"Test: [5500/6250] eta: 0:00:04 loss: 0.9291 (1.2585) acc1: 75.0000 (70.1622) acc5: 87.5000 (89.3656) time: 0.0056 data: 0.0005 max mem: 8962\n",
"Test: [5600/6250] eta: 0:00:04 loss: 0.9468 (1.2638) acc1: 62.5000 (70.0857) acc5: 87.5000 (89.2586) time: 0.0060 data: 0.0016 max mem: 8962\n",
"Test: [5700/6250] eta: 0:00:03 loss: 2.1460 (1.2784) acc1: 37.5000 (69.7926) acc5: 75.0000 (89.1203) time: 0.0050 data: 0.0006 max mem: 8962\n",
"Test: [5800/6250] eta: 0:00:02 loss: 0.6562 (1.2747) acc1: 75.0000 (69.8522) acc5: 100.0000 (89.1657) time: 0.0053 data: 0.0008 max mem: 8962\n",
"Test: [5900/6250] eta: 0:00:02 loss: 1.0713 (1.2722) acc1: 75.0000 (69.8759) acc5: 100.0000 (89.2095) time: 0.0053 data: 0.0007 max mem: 8962\n",
"Test: [6000/6250] eta: 0:00:01 loss: 0.5802 (1.2647) acc1: 87.5000 (70.0342) acc5: 87.5000 (89.2955) time: 0.0057 data: 0.0006 max mem: 8962\n",
"Test: [6100/6250] eta: 0:00:00 loss: 1.2877 (1.2731) acc1: 62.5000 (69.8328) acc5: 87.5000 (89.2046) time: 0.0052 data: 0.0008 max mem: 8962\n",
"Test: [6200/6250] eta: 0:00:00 loss: 0.2487 (1.2671) acc1: 87.5000 (69.9544) acc5: 100.0000 (89.2739) time: 0.0061 data: 0.0008 max mem: 8962\n",
"Test: Total time: 0:00:39\n",
"Test: Acc@1 69.994 Acc@5 89.292\n",
"Epoch: [4] [ 0/5005] eta: 6:27:39 lr: 0.0002 img/s: 465.53450010860746 loss: 0.8434 (0.8434) acc1: 71.0938 (71.0938) acc5: 87.5000 (87.5000) meanQV: 1.4977 (1.4977) stdQV: 0.3180 (0.3180) time: 4.6472 data: 4.0972 max mem: 8962\n",
"Epoch: [4] [ 100/5005] eta: 0:45:55 lr: 0.0002 img/s: 490.74347871791 loss: 0.9550 (0.8984) acc1: 67.1875 (69.1097) acc5: 86.7188 (87.1519) meanQV: 1.4691 (1.4833) stdQV: 0.3260 (0.3231) time: 0.5208 data: 0.0004 max mem: 8962\n",
"Epoch: [4] [ 200/5005] eta: 0:43:22 lr: 0.0002 img/s: 493.9701025625455 loss: 0.8835 (0.9029) acc1: 68.7500 (68.8783) acc5: 87.5000 (87.0375) meanQV: 1.4809 (1.4816) stdQV: 0.3240 (0.3238) time: 0.5217 data: 0.0003 max mem: 8962\n",
"Epoch: [4] [ 300/5005] eta: 0:41:56 lr: 0.0002 img/s: 491.63170037870236 loss: 0.9149 (0.9015) acc1: 67.9688 (68.7227) acc5: 87.8906 (87.0367) meanQV: 1.4758 (1.4805) stdQV: 0.3260 (0.3243) time: 0.5222 data: 0.0005 max mem: 8962\n",
"Epoch: [4] [ 400/5005] eta: 0:40:46 lr: 0.0002 img/s: 489.97201559708594 loss: 0.8910 (0.8983) acc1: 68.7500 (68.8055) acc5: 86.3281 (87.0305) meanQV: 1.4797 (1.4812) stdQV: 0.3246 (0.3240) time: 0.5209 data: 0.0003 max mem: 8962\n",
"Epoch: [4] [ 500/5005] eta: 0:39:44 lr: 0.0002 img/s: 494.2242973791529 loss: 0.8698 (0.8962) acc1: 69.9219 (68.8599) acc5: 86.7188 (87.0556) meanQV: 1.4895 (1.4815) stdQV: 0.3214 (0.3239) time: 0.5205 data: 0.0003 max mem: 8962\n",
"Epoch: [4] [ 600/5005] eta: 0:38:45 lr: 0.0002 img/s: 491.0853097714258 loss: 0.8708 (0.8966) acc1: 70.3125 (68.8962) acc5: 87.1094 (87.0457) meanQV: 1.4922 (1.4818) stdQV: 0.3188 (0.3238) time: 0.5203 data: 0.0003 max mem: 8962\n",
"Epoch: [4] [ 700/5005] eta: 0:37:48 lr: 0.0002 img/s: 493.5375728016555 loss: 0.9078 (0.8985) acc1: 68.7500 (68.8353) acc5: 87.1094 (87.0018) meanQV: 1.4813 (1.4814) stdQV: 0.3248 (0.3240) time: 0.5213 data: 0.0003 max mem: 8962\n",
"Epoch: [4] [ 800/5005] eta: 0:36:52 lr: 0.0002 img/s: 490.2532232540004 loss: 0.9188 (0.8979) acc1: 67.9688 (68.8904) acc5: 86.3281 (86.9953) meanQV: 1.4746 (1.4818) stdQV: 0.3270 (0.3238) time: 0.5209 data: 0.0003 max mem: 8962\n",
"Epoch: [4] [ 900/5005] eta: 0:35:57 lr: 0.0002 img/s: 493.18552460181996 loss: 0.9238 (0.8994) acc1: 67.9688 (68.8575) acc5: 86.3281 (86.9680) meanQV: 1.4758 (1.4815) stdQV: 0.3262 (0.3239) time: 0.5208 data: 0.0004 max mem: 8962\n",
"Epoch: [4] [1000/5005] eta: 0:35:03 lr: 0.0002 img/s: 490.8677666455156 loss: 0.8737 (0.8983) acc1: 69.9219 (68.8835) acc5: 87.1094 (86.9892) meanQV: 1.4895 (1.4817) stdQV: 0.3192 (0.3238) time: 0.5206 data: 0.0004 max mem: 8962\n",
"Epoch: [4] [1100/5005] eta: 0:34:09 lr: 0.0002 img/s: 494.22497982810273 loss: 0.8912 (0.8984) acc1: 69.1406 (68.9065) acc5: 86.7188 (87.0005) meanQV: 1.4840 (1.4819) stdQV: 0.3204 (0.3237) time: 0.5215 data: 0.0004 max mem: 8962\n",
"Epoch: [4] [1200/5005] eta: 0:33:16 lr: 0.0002 img/s: 491.8136503316876 loss: 0.9000 (0.8996) acc1: 68.7500 (68.8476) acc5: 87.5000 (86.9653) meanQV: 1.4801 (1.4814) stdQV: 0.3248 (0.3239) time: 0.5211 data: 0.0003 max mem: 8962\n",
"Epoch: [4] [1300/5005] eta: 0:32:22 lr: 0.0002 img/s: 494.33123736827326 loss: 0.8564 (0.8992) acc1: 70.3125 (68.8515) acc5: 87.5000 (86.9686) meanQV: 1.4918 (1.4815) stdQV: 0.3192 (0.3239) time: 0.5202 data: 0.0003 max mem: 8962\n",
"Epoch: [4] [1400/5005] eta: 0:31:29 lr: 0.0002 img/s: 493.6809842522038 loss: 0.8581 (0.8993) acc1: 69.5312 (68.8392) acc5: 87.5000 (86.9747) meanQV: 1.4867 (1.4814) stdQV: 0.3216 (0.3239) time: 0.5203 data: 0.0004 max mem: 8962\n",
"Epoch: [4] [1500/5005] eta: 0:30:36 lr: 0.0002 img/s: 492.017828708216 loss: 0.8798 (0.8990) acc1: 68.7500 (68.8564) acc5: 86.7188 (86.9821) meanQV: 1.4801 (1.4815) stdQV: 0.3216 (0.3239) time: 0.5223 data: 0.0004 max mem: 8962\n",
"Epoch: [4] [1600/5005] eta: 0:29:43 lr: 0.0002 img/s: 494.6657802925495 loss: 0.8522 (0.8990) acc1: 69.9219 (68.8637) acc5: 87.1094 (86.9842) meanQV: 1.4887 (1.4816) stdQV: 0.3213 (0.3239) time: 0.5216 data: 0.0003 max mem: 8962\n",
"Epoch: [4] [1700/5005] eta: 0:28:50 lr: 0.0002 img/s: 499.96709108899364 loss: 0.8898 (0.8983) acc1: 69.5312 (68.8800) acc5: 86.7188 (86.9978) meanQV: 1.4867 (1.4817) stdQV: 0.3215 (0.3238) time: 0.5219 data: 0.0004 max mem: 8962\n",
"Epoch: [4] [1800/5005] eta: 0:27:57 lr: 0.0002 img/s: 491.00491534530653 loss: 0.9142 (0.8985) acc1: 68.3594 (68.8823) acc5: 86.7188 (86.9988) meanQV: 1.4781 (1.4817) stdQV: 0.3251 (0.3238) time: 0.5209 data: 0.0003 max mem: 8962\n",
"Epoch: [4] [1900/5005] eta: 0:27:05 lr: 0.0002 img/s: 489.01270554630025 loss: 0.8833 (0.8986) acc1: 68.7500 (68.8708) acc5: 87.1094 (86.9945) meanQV: 1.4801 (1.4816) stdQV: 0.3248 (0.3238) time: 0.5220 data: 0.0003 max mem: 8962\n",
"Epoch: [4] [2000/5005] eta: 0:26:12 lr: 0.0002 img/s: 485.6457289761854 loss: 0.8689 (0.8982) acc1: 69.1406 (68.8986) acc5: 87.5000 (87.0073) meanQV: 1.4824 (1.4818) stdQV: 0.3235 (0.3238) time: 0.5208 data: 0.0004 max mem: 8962\n",
"Epoch: [4] [2100/5005] eta: 0:25:19 lr: 0.0002 img/s: 490.798211492559 loss: 0.8893 (0.8982) acc1: 68.7500 (68.8917) acc5: 87.5000 (87.0095) meanQV: 1.4813 (1.4817) stdQV: 0.3251 (0.3238) time: 0.5210 data: 0.0003 max mem: 8962\n",
"Epoch: [4] [2200/5005] eta: 0:24:27 lr: 0.0002 img/s: 493.2516794802064 loss: 0.8902 (0.8984) acc1: 68.3594 (68.8870) acc5: 87.1094 (87.0112) meanQV: 1.4785 (1.4817) stdQV: 0.3248 (0.3238) time: 0.5206 data: 0.0003 max mem: 8962\n",
"Epoch: [4] [2300/5005] eta: 0:23:34 lr: 0.0002 img/s: 487.6654664365519 loss: 0.8884 (0.8983) acc1: 68.7500 (68.8970) acc5: 86.3281 (87.0163) meanQV: 1.4813 (1.4818) stdQV: 0.3240 (0.3238) time: 0.5224 data: 0.0002 max mem: 8962\n",
"Epoch: [4] [2400/5005] eta: 0:22:42 lr: 0.0002 img/s: 487.97818203963027 loss: 0.9129 (0.8987) acc1: 68.3594 (68.9003) acc5: 87.5000 (87.0210) meanQV: 1.4785 (1.4818) stdQV: 0.3251 (0.3238) time: 0.5218 data: 0.0003 max mem: 8962\n",
"Epoch: [4] [2500/5005] eta: 0:21:49 lr: 0.0002 img/s: 493.4107957036287 loss: 0.8948 (0.8988) acc1: 68.7500 (68.9018) acc5: 86.3281 (87.0080) meanQV: 1.4809 (1.4818) stdQV: 0.3240 (0.3238) time: 0.5208 data: 0.0003 max mem: 8962\n",
"Epoch: [4] [2600/5005] eta: 0:20:57 lr: 0.0002 img/s: 491.60288897587867 loss: 0.8879 (0.8991) acc1: 68.7500 (68.9072) acc5: 86.3281 (87.0161) meanQV: 1.4813 (1.4818) stdQV: 0.3226 (0.3237) time: 0.5208 data: 0.0003 max mem: 8962\n",
"Epoch: [4] [2700/5005] eta: 0:20:04 lr: 0.0002 img/s: 491.1488804236057 loss: 0.8520 (0.8993) acc1: 69.9219 (68.9277) acc5: 87.8906 (87.0213) meanQV: 1.4895 (1.4820) stdQV: 0.3204 (0.3237) time: 0.5217 data: 0.0004 max mem: 8962\n",
"Epoch: [4] [2800/5005] eta: 0:19:12 lr: 0.0002 img/s: 493.3804151641137 loss: 0.8855 (0.8992) acc1: 69.1406 (68.9271) acc5: 87.1094 (87.0320) meanQV: 1.4828 (1.4820) stdQV: 0.3228 (0.3237) time: 0.5209 data: 0.0004 max mem: 8962\n",
"Epoch: [4] [2900/5005] eta: 0:18:20 lr: 0.0002 img/s: 494.2067818344083 loss: 0.9216 (0.8993) acc1: 68.7500 (68.9377) acc5: 86.3281 (87.0301) meanQV: 1.4813 (1.4821) stdQV: 0.3251 (0.3237) time: 0.5215 data: 0.0003 max mem: 8962\n",
"Epoch: [4] [3000/5005] eta: 0:17:27 lr: 0.0002 img/s: 491.1448365704542 loss: 0.9209 (0.8991) acc1: 68.3594 (68.9410) acc5: 86.7188 (87.0258) meanQV: 1.4785 (1.4821) stdQV: 0.3249 (0.3237) time: 0.5223 data: 0.0004 max mem: 8962\n",
"Epoch: [4] [3100/5005] eta: 0:16:35 lr: 0.0002 img/s: 492.0568356895722 loss: 0.8835 (0.8994) acc1: 68.7500 (68.9353) acc5: 87.1094 (87.0167) meanQV: 1.4813 (1.4820) stdQV: 0.3226 (0.3237) time: 0.5203 data: 0.0004 max mem: 8962\n",
"Epoch: [4] [3200/5005] eta: 0:15:43 lr: 0.0002 img/s: 491.44133759107467 loss: 0.8832 (0.8996) acc1: 69.9219 (68.9327) acc5: 87.1094 (87.0172) meanQV: 1.4883 (1.4820) stdQV: 0.3214 (0.3237) time: 0.5212 data: 0.0005 max mem: 8962\n",
"Epoch: [4] [3300/5005] eta: 0:14:50 lr: 0.0002 img/s: 487.73613035951706 loss: 0.8594 (0.8997) acc1: 69.1406 (68.9283) acc5: 87.8906 (87.0199) meanQV: 1.4840 (1.4820) stdQV: 0.3228 (0.3237) time: 0.5213 data: 0.0004 max mem: 8962\n",
"Epoch: [4] [3400/5005] eta: 0:13:58 lr: 0.0002 img/s: 491.204377802288 loss: 0.9090 (0.8999) acc1: 68.7500 (68.9294) acc5: 86.3281 (87.0150) meanQV: 1.4789 (1.4820) stdQV: 0.3246 (0.3237) time: 0.5213 data: 0.0004 max mem: 8962\n",
"Epoch: [4] [3500/5005] eta: 0:13:06 lr: 0.0002 img/s: 495.01811999100084 loss: 0.9384 (0.9003) acc1: 68.3594 (68.9144) acc5: 86.3281 (87.0097) meanQV: 1.4785 (1.4819) stdQV: 0.3262 (0.3237) time: 0.5219 data: 0.0003 max mem: 8962\n",
"Epoch: [4] [3600/5005] eta: 0:12:13 lr: 0.0002 img/s: 488.85240665181243 loss: 0.8764 (0.9000) acc1: 69.9219 (68.9205) acc5: 87.8906 (87.0174) meanQV: 1.4895 (1.4819) stdQV: 0.3204 (0.3237) time: 0.5217 data: 0.0004 max mem: 8962\n",
"Epoch: [4] [3700/5005] eta: 0:11:21 lr: 0.0002 img/s: 488.62905411616515 loss: 0.8644 (0.8999) acc1: 69.9219 (68.9198) acc5: 86.7188 (87.0206) meanQV: 1.4895 (1.4819) stdQV: 0.3204 (0.3237) time: 0.5218 data: 0.0004 max mem: 8962\n",
"Epoch: [4] [3800/5005] eta: 0:10:29 lr: 0.0002 img/s: 488.65351505542134 loss: 0.8901 (0.8997) acc1: 68.7500 (68.9341) acc5: 87.5000 (87.0288) meanQV: 1.4789 (1.4820) stdQV: 0.3248 (0.3237) time: 0.5216 data: 0.0003 max mem: 8962\n",
"Epoch: [4] [3900/5005] eta: 0:09:37 lr: 0.0002 img/s: 493.65601740808734 loss: 0.8595 (0.8997) acc1: 68.3594 (68.9418) acc5: 87.1094 (87.0309) meanQV: 1.4785 (1.4821) stdQV: 0.3262 (0.3237) time: 0.5212 data: 0.0004 max mem: 8962\n",
"Epoch: [4] [4000/5005] eta: 0:08:44 lr: 0.0002 img/s: 492.87718715199964 loss: 0.8968 (0.8997) acc1: 69.9219 (68.9440) acc5: 87.5000 (87.0334) meanQV: 1.4895 (1.4821) stdQV: 0.3204 (0.3237) time: 0.5208 data: 0.0003 max mem: 8962\n",
"Epoch: [4] [4100/5005] eta: 0:07:52 lr: 0.0002 img/s: 488.15255480193474 loss: 0.8810 (0.8995) acc1: 68.3594 (68.9461) acc5: 87.5000 (87.0394) meanQV: 1.4785 (1.4821) stdQV: 0.3251 (0.3237) time: 0.5210 data: 0.0004 max mem: 8962\n",
"Epoch: [4] [4200/5005] eta: 0:07:00 lr: 0.0002 img/s: 490.5603024844127 loss: 0.9360 (0.8999) acc1: 68.7500 (68.9386) acc5: 85.9375 (87.0355) meanQV: 1.4813 (1.4820) stdQV: 0.3240 (0.3237) time: 0.5213 data: 0.0004 max mem: 8962\n",
"Epoch: [4] [4300/5005] eta: 0:06:08 lr: 0.0002 img/s: 493.6328685908266 loss: 0.8927 (0.9000) acc1: 67.9688 (68.9293) acc5: 87.1094 (87.0393) meanQV: 1.4758 (1.4820) stdQV: 0.3273 (0.3237) time: 0.5209 data: 0.0003 max mem: 8962\n",
"Epoch: [4] [4400/5005] eta: 0:05:15 lr: 0.0002 img/s: 500.0339136176978 loss: 0.8938 (0.9000) acc1: 67.9688 (68.9281) acc5: 87.5000 (87.0415) meanQV: 1.4746 (1.4820) stdQV: 0.3237 (0.3237) time: 0.5203 data: 0.0003 max mem: 8962\n",
"Epoch: [4] [4500/5005] eta: 0:04:23 lr: 0.0002 img/s: 491.36240054840806 loss: 0.8792 (0.9000) acc1: 69.5312 (68.9270) acc5: 87.1094 (87.0380) meanQV: 1.4832 (1.4820) stdQV: 0.3213 (0.3237) time: 0.5218 data: 0.0003 max mem: 8962\n",
"Epoch: [4] [4600/5005] eta: 0:03:31 lr: 0.0002 img/s: 494.30324647494075 loss: 0.9115 (0.9000) acc1: 69.1406 (68.9302) acc5: 86.7188 (87.0371) meanQV: 1.4828 (1.4820) stdQV: 0.3238 (0.3237) time: 0.5208 data: 0.0003 max mem: 8962\n",
"Epoch: [4] [4700/5005] eta: 0:02:39 lr: 0.0002 img/s: 494.0173748211402 loss: 0.8860 (0.9000) acc1: 69.9219 (68.9322) acc5: 87.1094 (87.0404) meanQV: 1.4895 (1.4820) stdQV: 0.3202 (0.3237) time: 0.5212 data: 0.0004 max mem: 8962\n",
"Epoch: [4] [4800/5005] eta: 0:01:47 lr: 0.0002 img/s: 493.9932830203957 loss: 0.9224 (0.9002) acc1: 68.7500 (68.9312) acc5: 87.1094 (87.0430) meanQV: 1.4801 (1.4820) stdQV: 0.3248 (0.3237) time: 0.5215 data: 0.0004 max mem: 8962\n",
"Epoch: [4] [4900/5005] eta: 0:00:54 lr: 0.0002 img/s: 494.8479308631688 loss: 0.8930 (0.9002) acc1: 67.9688 (68.9332) acc5: 86.7188 (87.0443) meanQV: 1.4758 (1.4820) stdQV: 0.3262 (0.3237) time: 0.5202 data: 0.0004 max mem: 8962\n",
"Epoch: [4] [5000/5005] eta: 0:00:02 lr: 0.0002 img/s: 492.44182560982995 loss: 0.8594 (0.8999) acc1: 70.3125 (68.9486) acc5: 87.5000 (87.0523) meanQV: 1.4922 (1.4821) stdQV: 0.3192 (0.3236) time: 0.5203 data: 0.0002 max mem: 8962\n",
"Epoch: [4] Total time: 0:43:33\n",
"Test: [ 0/6250] eta: 1:16:02 loss: 0.7909 (0.7909) acc1: 75.0000 (75.0000) acc5: 100.0000 (100.0000) time: 0.7299 data: 0.7206 max mem: 8962\n",
"Test: [ 100/6250] eta: 0:01:29 loss: 0.1878 (0.6247) acc1: 87.5000 (83.4158) acc5: 100.0000 (95.2970) time: 0.0065 data: 0.0006 max mem: 8962\n",
"Test: [ 200/6250] eta: 0:01:04 loss: 0.6666 (0.6644) acc1: 87.5000 (84.3284) acc5: 100.0000 (94.5274) time: 0.0077 data: 0.0020 max mem: 8962\n",
"Test: [ 300/6250] eta: 0:00:54 loss: 1.2709 (0.8699) acc1: 62.5000 (78.9037) acc5: 87.5000 (93.0648) time: 0.0064 data: 0.0008 max mem: 8962\n",
"Test: [ 400/6250] eta: 0:00:49 loss: 0.8989 (0.9948) acc1: 75.0000 (76.1222) acc5: 100.0000 (92.1135) time: 0.0065 data: 0.0005 max mem: 8962\n",
"Test: [ 500/6250] eta: 0:00:45 loss: 1.1087 (1.0409) acc1: 75.0000 (74.9251) acc5: 87.5000 (91.7914) time: 0.0068 data: 0.0025 max mem: 8962\n",
"Test: [ 600/6250] eta: 0:00:43 loss: 0.4547 (0.9505) acc1: 87.5000 (76.8927) acc5: 100.0000 (92.4293) time: 0.0059 data: 0.0005 max mem: 8962\n",
"Test: [ 700/6250] eta: 0:00:40 loss: 0.3772 (0.9356) acc1: 87.5000 (77.1755) acc5: 100.0000 (92.4215) time: 0.0055 data: 0.0004 max mem: 8962\n",
"Test: [ 800/6250] eta: 0:00:40 loss: 0.8068 (0.9664) acc1: 75.0000 (76.5762) acc5: 87.5000 (92.0568) time: 0.0060 data: 0.0004 max mem: 8962\n",
"Test: [ 900/6250] eta: 0:00:38 loss: 0.3764 (0.9114) acc1: 87.5000 (77.8996) acc5: 100.0000 (92.5361) time: 0.0062 data: 0.0004 max mem: 8962\n",
"Test: [1000/6250] eta: 0:00:37 loss: 0.9310 (0.8980) acc1: 75.0000 (78.1094) acc5: 100.0000 (92.7572) time: 0.0063 data: 0.0006 max mem: 8962\n",
"Test: [1100/6250] eta: 0:00:37 loss: 1.1327 (0.9363) acc1: 75.0000 (77.1571) acc5: 100.0000 (92.5636) time: 0.0073 data: 0.0006 max mem: 8962\n",
"Test: [1200/6250] eta: 0:00:36 loss: 1.0381 (0.9410) acc1: 75.0000 (76.7902) acc5: 87.5000 (92.6728) time: 0.0076 data: 0.0006 max mem: 8962\n",
"Test: [1300/6250] eta: 0:00:35 loss: 0.4042 (0.9409) acc1: 87.5000 (76.5853) acc5: 100.0000 (92.8997) time: 0.0066 data: 0.0007 max mem: 8962\n",
"Test: [1400/6250] eta: 0:00:34 loss: 0.7884 (0.9356) acc1: 75.0000 (76.6774) acc5: 87.5000 (92.9961) time: 0.0063 data: 0.0005 max mem: 8962\n",
"Test: [1500/6250] eta: 0:00:33 loss: 0.9547 (0.9392) acc1: 75.0000 (76.4074) acc5: 100.0000 (93.1046) time: 0.0058 data: 0.0005 max mem: 8962\n",
"Test: [1600/6250] eta: 0:00:32 loss: 0.1298 (0.9348) acc1: 87.5000 (76.2492) acc5: 100.0000 (93.2464) time: 0.0063 data: 0.0006 max mem: 8962\n",
"Test: [1700/6250] eta: 0:00:32 loss: 1.0550 (0.9324) acc1: 75.0000 (76.1023) acc5: 100.0000 (93.3715) time: 0.0092 data: 0.0041 max mem: 8962\n",
"Test: [1800/6250] eta: 0:00:31 loss: 1.2747 (0.9422) acc1: 62.5000 (75.8537) acc5: 87.5000 (93.3648) time: 0.0064 data: 0.0004 max mem: 8962\n",
"Test: [1900/6250] eta: 0:00:30 loss: 0.9273 (0.9352) acc1: 75.0000 (76.1244) acc5: 100.0000 (93.4705) time: 0.0065 data: 0.0005 max mem: 8962\n",
"Test: [2000/6250] eta: 0:00:30 loss: 0.4722 (0.9411) acc1: 87.5000 (76.0120) acc5: 100.0000 (93.4658) time: 0.0064 data: 0.0006 max mem: 8962\n",
"Test: [2100/6250] eta: 0:00:29 loss: 0.3972 (0.9220) acc1: 87.5000 (76.5469) acc5: 100.0000 (93.6161) time: 0.0064 data: 0.0005 max mem: 8962\n",
"Test: [2200/6250] eta: 0:00:28 loss: 0.1838 (0.9145) acc1: 87.5000 (76.6924) acc5: 100.0000 (93.6733) time: 0.0052 data: 0.0004 max mem: 8962\n",
"Test: [2300/6250] eta: 0:00:27 loss: 0.7064 (0.9173) acc1: 87.5000 (76.6515) acc5: 100.0000 (93.6441) time: 0.0061 data: 0.0019 max mem: 8962\n",
"Test: [2400/6250] eta: 0:00:26 loss: 0.9312 (0.9272) acc1: 75.0000 (76.5618) acc5: 87.5000 (93.5392) time: 0.0057 data: 0.0006 max mem: 8962\n",
"Test: [2500/6250] eta: 0:00:26 loss: 0.9157 (0.9291) acc1: 75.0000 (76.6144) acc5: 100.0000 (93.4976) time: 0.0060 data: 0.0006 max mem: 8962\n",
"Test: [2600/6250] eta: 0:00:25 loss: 2.2484 (0.9531) acc1: 50.0000 (76.1246) acc5: 62.5000 (93.1949) time: 0.0059 data: 0.0005 max mem: 8962\n",
"Test: [2700/6250] eta: 0:00:24 loss: 0.8119 (0.9641) acc1: 75.0000 (75.9210) acc5: 87.5000 (93.0766) time: 0.0057 data: 0.0004 max mem: 8962\n",
"Test: [2800/6250] eta: 0:00:23 loss: 1.5186 (0.9860) acc1: 62.5000 (75.4418) acc5: 75.0000 (92.8240) time: 0.0058 data: 0.0004 max mem: 8962\n",
"Test: [2900/6250] eta: 0:00:23 loss: 1.7899 (1.0040) acc1: 37.5000 (75.0603) acc5: 87.5000 (92.6060) time: 0.0078 data: 0.0007 max mem: 8962\n",
"Test: [3000/6250] eta: 0:00:22 loss: 2.3188 (1.0252) acc1: 50.0000 (74.7418) acc5: 75.0000 (92.2817) time: 0.0062 data: 0.0006 max mem: 8962\n",
"Test: [3100/6250] eta: 0:00:21 loss: 1.8096 (1.0517) acc1: 50.0000 (74.2341) acc5: 75.0000 (92.0106) time: 0.0056 data: 0.0004 max mem: 8962\n",
"Test: [3200/6250] eta: 0:00:20 loss: 0.6736 (1.0715) acc1: 75.0000 (73.8402) acc5: 100.0000 (91.8072) time: 0.0057 data: 0.0004 max mem: 8962\n",
"Test: [3300/6250] eta: 0:00:19 loss: 1.2702 (1.0843) acc1: 62.5000 (73.4853) acc5: 87.5000 (91.6919) time: 0.0060 data: 0.0009 max mem: 8962\n",
"Test: [3400/6250] eta: 0:00:19 loss: 2.4354 (1.0978) acc1: 37.5000 (73.2468) acc5: 75.0000 (91.5062) time: 0.0059 data: 0.0005 max mem: 8962\n",
"Test: [3500/6250] eta: 0:00:18 loss: 1.7555 (1.1037) acc1: 50.0000 (73.1720) acc5: 75.0000 (91.3846) time: 0.0058 data: 0.0006 max mem: 8962\n",
"Test: [3600/6250] eta: 0:00:17 loss: 0.5104 (1.0999) acc1: 87.5000 (73.3164) acc5: 100.0000 (91.3948) time: 0.0054 data: 0.0005 max mem: 8962\n",
"Test: [3700/6250] eta: 0:00:17 loss: 1.7609 (1.1145) acc1: 62.5000 (73.0276) acc5: 87.5000 (91.2017) time: 0.0116 data: 0.0071 max mem: 8962\n",
"Test: [3800/6250] eta: 0:00:16 loss: 0.6589 (1.1207) acc1: 87.5000 (72.9446) acc5: 87.5000 (91.1076) time: 0.0069 data: 0.0008 max mem: 8962\n",
"Test: [3900/6250] eta: 0:00:15 loss: 2.3705 (1.1368) acc1: 50.0000 (72.6224) acc5: 75.0000 (90.8837) time: 0.0063 data: 0.0010 max mem: 8962\n",
"Test: [4000/6250] eta: 0:00:14 loss: 1.3760 (1.1507) acc1: 62.5000 (72.3663) acc5: 87.5000 (90.7179) time: 0.0052 data: 0.0004 max mem: 8962\n",
"Test: [4100/6250] eta: 0:00:14 loss: 1.3587 (1.1609) acc1: 62.5000 (72.1836) acc5: 87.5000 (90.6059) time: 0.0056 data: 0.0005 max mem: 8962\n",
"Test: [4200/6250] eta: 0:00:13 loss: 0.4211 (1.1651) acc1: 87.5000 (72.0543) acc5: 100.0000 (90.5975) time: 0.0050 data: 0.0004 max mem: 8962\n",
"Test: [4300/6250] eta: 0:00:12 loss: 0.4845 (1.1744) acc1: 75.0000 (71.9339) acc5: 87.5000 (90.4354) time: 0.0056 data: 0.0006 max mem: 8962\n",
"Test: [4400/6250] eta: 0:00:12 loss: 0.9234 (1.1813) acc1: 75.0000 (71.7422) acc5: 100.0000 (90.3885) time: 0.0054 data: 0.0005 max mem: 8962\n",
"Test: [4500/6250] eta: 0:00:11 loss: 1.2129 (1.1870) acc1: 62.5000 (71.6230) acc5: 87.5000 (90.3299) time: 0.0060 data: 0.0008 max mem: 8962\n",
"Test: [4600/6250] eta: 0:00:10 loss: 1.6169 (1.1973) acc1: 50.0000 (71.4519) acc5: 87.5000 (90.1652) time: 0.0059 data: 0.0006 max mem: 8962\n",
"Test: [4700/6250] eta: 0:00:10 loss: 1.4572 (1.2073) acc1: 62.5000 (71.1471) acc5: 87.5000 (90.0181) time: 0.0054 data: 0.0005 max mem: 8962\n",
"Test: [4800/6250] eta: 0:00:09 loss: 1.1656 (1.2140) acc1: 62.5000 (71.0347) acc5: 87.5000 (89.9188) time: 0.0057 data: 0.0005 max mem: 8962\n",
"Test: [4900/6250] eta: 0:00:08 loss: 0.4505 (1.2183) acc1: 87.5000 (70.9779) acc5: 100.0000 (89.8312) time: 0.0050 data: 0.0005 max mem: 8962\n",
"Test: [5000/6250] eta: 0:00:08 loss: 2.1536 (1.2300) acc1: 62.5000 (70.8008) acc5: 75.0000 (89.6821) time: 0.0061 data: 0.0004 max mem: 8962\n",
"Test: [5100/6250] eta: 0:00:07 loss: 1.3107 (1.2352) acc1: 62.5000 (70.6920) acc5: 100.0000 (89.6442) time: 0.0064 data: 0.0008 max mem: 8962\n",
"Test: [5200/6250] eta: 0:00:06 loss: 1.0626 (1.2412) acc1: 75.0000 (70.5850) acc5: 87.5000 (89.5741) time: 0.0053 data: 0.0005 max mem: 8962\n",
"Test: [5300/6250] eta: 0:00:06 loss: 1.4655 (1.2552) acc1: 62.5000 (70.2650) acc5: 87.5000 (89.3864) time: 0.0063 data: 0.0005 max mem: 8962\n",
"Test: [5400/6250] eta: 0:00:05 loss: 0.8139 (1.2579) acc1: 75.0000 (70.2162) acc5: 87.5000 (89.3469) time: 0.0053 data: 0.0004 max mem: 8962\n",
"Test: [5500/6250] eta: 0:00:04 loss: 0.9340 (1.2610) acc1: 75.0000 (70.1213) acc5: 87.5000 (89.3065) time: 0.0055 data: 0.0004 max mem: 8962\n",
"Test: [5600/6250] eta: 0:00:04 loss: 1.0789 (1.2661) acc1: 62.5000 (70.0433) acc5: 87.5000 (89.2140) time: 0.0064 data: 0.0013 max mem: 8962\n",
"Test: [5700/6250] eta: 0:00:03 loss: 2.0526 (1.2814) acc1: 37.5000 (69.7422) acc5: 75.0000 (89.0567) time: 0.0050 data: 0.0004 max mem: 8962\n",
"Test: [5800/6250] eta: 0:00:02 loss: 0.5955 (1.2775) acc1: 75.0000 (69.8220) acc5: 100.0000 (89.0989) time: 0.0068 data: 0.0007 max mem: 8962\n",
"Test: [5900/6250] eta: 0:00:02 loss: 1.1023 (1.2751) acc1: 62.5000 (69.8483) acc5: 100.0000 (89.1353) time: 0.0056 data: 0.0006 max mem: 8962\n",
"Test: [6000/6250] eta: 0:00:01 loss: 0.5431 (1.2677) acc1: 87.5000 (69.9988) acc5: 87.5000 (89.2289) time: 0.0058 data: 0.0004 max mem: 8962\n",
"Test: [6100/6250] eta: 0:00:00 loss: 1.3317 (1.2758) acc1: 62.5000 (69.8164) acc5: 87.5000 (89.1370) time: 0.0054 data: 0.0004 max mem: 8962\n",
"Test: [6200/6250] eta: 0:00:00 loss: 0.2130 (1.2696) acc1: 87.5000 (69.9444) acc5: 100.0000 (89.2114) time: 0.0065 data: 0.0005 max mem: 8962\n",
"Test: Total time: 0:00:40\n",
"Test: Acc@1 69.982 Acc@5 89.216\n",
"Epoch: [5] [ 0/5005] eta: 6:26:06 lr: 0.0001 img/s: 472.08087977640673 loss: 0.9772 (0.9772) acc1: 70.3125 (70.3125) acc5: 87.8906 (87.8906) meanQV: 1.4922 (1.4922) stdQV: 0.3204 (0.3204) time: 4.6287 data: 4.0864 max mem: 8962\n",
"Epoch: [5] [ 100/5005] eta: 0:45:55 lr: 0.0001 img/s: 493.412156113808 loss: 0.8671 (0.8977) acc1: 69.1406 (69.1445) acc5: 87.1094 (87.3028) meanQV: 1.4840 (1.4833) stdQV: 0.3228 (0.3230) time: 0.5215 data: 0.0004 max mem: 8962\n",
"Epoch: [5] [ 200/5005] eta: 0:42:34 lr: 0.0001 img/s: 633.4831033504211 loss: 0.8743 (0.9023) acc1: 69.5312 (69.1465) acc5: 87.1094 (87.1774) meanQV: 1.4867 (1.4834) stdQV: 0.3216 (0.3230) time: 0.4189 data: 0.0004 max mem: 8962\n",
"Epoch: [5] [ 300/5005] eta: 0:37:51 lr: 0.0001 img/s: 491.4145726182402 loss: 0.8887 (0.9009) acc1: 69.5312 (69.1938) acc5: 87.8906 (87.1872) meanQV: 1.4867 (1.4838) stdQV: 0.3204 (0.3229) time: 0.3729 data: 0.0032 max mem: 8962\n",
"Epoch: [5] [ 400/5005] eta: 0:37:47 lr: 0.0001 img/s: 488.7140108034497 loss: 0.9087 (0.9030) acc1: 68.3594 (69.0539) acc5: 87.5000 (87.1396) meanQV: 1.4781 (1.4828) stdQV: 0.3251 (0.3233) time: 0.5207 data: 0.0003 max mem: 8962\n",
"Epoch: [5] [ 500/5005] eta: 0:37:23 lr: 0.0001 img/s: 489.01871879991273 loss: 0.8969 (0.9043) acc1: 67.5781 (68.9605) acc5: 87.1094 (87.0493) meanQV: 1.4730 (1.4821) stdQV: 0.3249 (0.3237) time: 0.5216 data: 0.0003 max mem: 8962\n",
"Epoch: [5] [ 600/5005] eta: 0:36:50 lr: 0.0001 img/s: 494.24204166440353 loss: 0.9185 (0.9048) acc1: 68.3594 (68.9502) acc5: 87.1094 (87.0873) meanQV: 1.4785 (1.4821) stdQV: 0.3262 (0.3237) time: 0.5209 data: 0.0004 max mem: 8962\n",
"Epoch: [5] [ 700/5005] eta: 0:36:12 lr: 0.0001 img/s: 490.8462248780818 loss: 0.9053 (0.9051) acc1: 68.3594 (68.9840) acc5: 85.9375 (87.0927) meanQV: 1.4781 (1.4823) stdQV: 0.3240 (0.3236) time: 0.5222 data: 0.0003 max mem: 8962\n",
"Epoch: [5] [ 800/5005] eta: 0:35:30 lr: 0.0001 img/s: 493.49674301159627 loss: 0.8652 (0.9059) acc1: 70.3125 (68.9992) acc5: 87.5000 (87.0879) meanQV: 1.4918 (1.4824) stdQV: 0.3202 (0.3235) time: 0.5209 data: 0.0004 max mem: 8962\n",
"Epoch: [5] [ 900/5005] eta: 0:34:46 lr: 0.0001 img/s: 492.24203409939537 loss: 0.8904 (0.9059) acc1: 69.1406 (68.9659) acc5: 87.5000 (87.0920) meanQV: 1.4840 (1.4822) stdQV: 0.3224 (0.3236) time: 0.5210 data: 0.0003 max mem: 8962\n",
"Epoch: [5] [1000/5005] eta: 0:34:00 lr: 0.0001 img/s: 493.5423367172554 loss: 0.9307 (0.9063) acc1: 69.1406 (68.9541) acc5: 85.9375 (87.0731) meanQV: 1.4840 (1.4821) stdQV: 0.3228 (0.3236) time: 0.5217 data: 0.0004 max mem: 8962\n",
"Epoch: [5] [1100/5005] eta: 0:33:14 lr: 0.0001 img/s: 489.2419819520163 loss: 0.8769 (0.9064) acc1: 69.9219 (68.9540) acc5: 87.1094 (87.0718) meanQV: 1.4891 (1.4821) stdQV: 0.3212 (0.3236) time: 0.5218 data: 0.0003 max mem: 8962\n",
"Epoch: [5] [1200/5005] eta: 0:32:26 lr: 0.0001 img/s: 499.6392909558434 loss: 0.8655 (0.9056) acc1: 67.9688 (68.9608) acc5: 86.7188 (87.0716) meanQV: 1.4746 (1.4821) stdQV: 0.3257 (0.3236) time: 0.5207 data: 0.0003 max mem: 8962\n",
"Epoch: [5] [1300/5005] eta: 0:31:37 lr: 0.0001 img/s: 493.8163030755964 loss: 0.9314 (0.9051) acc1: 67.5781 (68.9860) acc5: 86.7188 (87.0968) meanQV: 1.4727 (1.4823) stdQV: 0.3280 (0.3235) time: 0.5206 data: 0.0004 max mem: 8962\n",
"Epoch: [5] [1400/5005] eta: 0:30:49 lr: 0.0001 img/s: 494.9975815812936 loss: 0.8642 (0.9041) acc1: 69.5312 (69.0129) acc5: 87.8906 (87.0929) meanQV: 1.4844 (1.4825) stdQV: 0.3216 (0.3234) time: 0.5214 data: 0.0003 max mem: 8962\n",
"Epoch: [5] [1500/5005] eta: 0:29:59 lr: 0.0001 img/s: 488.4738953923197 loss: 0.9535 (0.9047) acc1: 67.9688 (68.9798) acc5: 86.3281 (87.0698) meanQV: 1.4758 (1.4823) stdQV: 0.3262 (0.3235) time: 0.5208 data: 0.0004 max mem: 8962\n",
"Epoch: [5] [1600/5005] eta: 0:29:09 lr: 0.0001 img/s: 489.3487835801782 loss: 0.8809 (0.9042) acc1: 69.1406 (69.0108) acc5: 87.1094 (87.0811) meanQV: 1.4828 (1.4825) stdQV: 0.3237 (0.3235) time: 0.5214 data: 0.0004 max mem: 8962\n",
"Epoch: [5] [1700/5005] eta: 0:28:19 lr: 0.0001 img/s: 489.42685183665805 loss: 0.8938 (0.9043) acc1: 68.3594 (68.9845) acc5: 85.9375 (87.0756) meanQV: 1.4785 (1.4823) stdQV: 0.3262 (0.3235) time: 0.5206 data: 0.0003 max mem: 8962\n",
"Epoch: [5] [1800/5005] eta: 0:27:29 lr: 0.0001 img/s: 489.34900659686224 loss: 0.8771 (0.9038) acc1: 69.9219 (69.0081) acc5: 89.0625 (87.1057) meanQV: 1.4867 (1.4825) stdQV: 0.3192 (0.3235) time: 0.5219 data: 0.0004 max mem: 8962\n",
"Epoch: [5] [1900/5005] eta: 0:26:39 lr: 0.0001 img/s: 488.80233479720977 loss: 0.9229 (0.9041) acc1: 67.9688 (69.0192) acc5: 86.7188 (87.1049) meanQV: 1.4746 (1.4825) stdQV: 0.3236 (0.3234) time: 0.5216 data: 0.0004 max mem: 8962\n",
"Epoch: [5] [2000/5005] eta: 0:25:48 lr: 0.0001 img/s: 492.5014558430955 loss: 0.9266 (0.9045) acc1: 67.9688 (69.0048) acc5: 86.7188 (87.0990) meanQV: 1.4758 (1.4824) stdQV: 0.3262 (0.3235) time: 0.5205 data: 0.0004 max mem: 8962\n"
]
},
{
"ename": "KeyboardInterrupt",
"evalue": "",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[8], line 27\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;21;01mtypes\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mimport\u001b[39;00m SimpleNamespace\n\u001b[1;32m 3\u001b[0m args \u001b[38;5;241m=\u001b[39m SimpleNamespace(\n\u001b[1;32m 4\u001b[0m data_path\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m/home/cs/Documents/datasets/imagenet\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m 5\u001b[0m model\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mresnet18\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 24\u001b[0m trp_lambdas\u001b[38;5;241m=\u001b[39m[\u001b[38;5;241m0.4\u001b[39m, \u001b[38;5;241m0.2\u001b[39m, \u001b[38;5;241m0.1\u001b[39m],\n\u001b[1;32m 25\u001b[0m )\n\u001b[0;32m---> 27\u001b[0m \u001b[43mmain\u001b[49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\n",
"Cell \u001b[0;32mIn[7], line 151\u001b[0m, in \u001b[0;36mmain\u001b[0;34m(args)\u001b[0m\n\u001b[1;32m 149\u001b[0m start_time \u001b[38;5;241m=\u001b[39m time\u001b[38;5;241m.\u001b[39mtime()\n\u001b[1;32m 150\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m epoch \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(args\u001b[38;5;241m.\u001b[39mepochs):\n\u001b[0;32m--> 151\u001b[0m \u001b[43mtrain_one_epoch\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43moptimizer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata_loader\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdevice\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mepoch\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 152\u001b[0m lr_scheduler\u001b[38;5;241m.\u001b[39mstep()\n\u001b[1;32m 153\u001b[0m evaluate(model, nn\u001b[38;5;241m.\u001b[39mCrossEntropyLoss(), data_loader_test, device\u001b[38;5;241m=\u001b[39mdevice)\n",
"Cell \u001b[0;32mIn[7], line 61\u001b[0m, in \u001b[0;36mtrain_one_epoch\u001b[0;34m(model, optimizer, data_loader, device, epoch, args)\u001b[0m\n\u001b[1;32m 59\u001b[0m acc1, acc5 \u001b[38;5;241m=\u001b[39m utils\u001b[38;5;241m.\u001b[39maccuracy(output, target, topk\u001b[38;5;241m=\u001b[39m(\u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m5\u001b[39m))\n\u001b[1;32m 60\u001b[0m batch_size \u001b[38;5;241m=\u001b[39m image\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m0\u001b[39m]\n\u001b[0;32m---> 61\u001b[0m metric_logger\u001b[38;5;241m.\u001b[39mupdate(loss\u001b[38;5;241m=\u001b[39m\u001b[43mloss\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mitem\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m, lr\u001b[38;5;241m=\u001b[39moptimizer\u001b[38;5;241m.\u001b[39mparam_groups[\u001b[38;5;241m0\u001b[39m][\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mlr\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[1;32m 62\u001b[0m metric_logger\u001b[38;5;241m.\u001b[39mmeters[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124macc1\u001b[39m\u001b[38;5;124m\"\u001b[39m]\u001b[38;5;241m.\u001b[39mupdate(acc1\u001b[38;5;241m.\u001b[39mitem(), n\u001b[38;5;241m=\u001b[39mbatch_size)\n\u001b[1;32m 63\u001b[0m metric_logger\u001b[38;5;241m.\u001b[39mmeters[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124macc5\u001b[39m\u001b[38;5;124m\"\u001b[39m]\u001b[38;5;241m.\u001b[39mupdate(acc5\u001b[38;5;241m.\u001b[39mitem(), n\u001b[38;5;241m=\u001b[39mbatch_size)\n",
"\u001b[0;31mKeyboardInterrupt\u001b[0m: "
]
}
],
"source": [
"from types import SimpleNamespace\n",
"\n",
"args = SimpleNamespace(\n",
" data_path=\"/home/cs/Documents/datasets/imagenet\", # Replace with your /path/to/imagenet\n",
" model=\"resnet18\",\n",
" device=\"cuda\",\n",
" batch_size=256,\n",
" epochs=10,\n",
" lr=0.0004,\n",
" momentum=0.9,\n",
" weight_decay=1e-4,\n",
" lr_warmup_epochs=1,\n",
" lr_warmup_decay=0.0,\n",
" lr_step_size=2,\n",
" lr_gamma=0.5,\n",
" print_freq=100,\n",
" output_dir=\"resnet18\",\n",
" use_deterministic_algorithms=False,\n",
" weights=\"ResNet18_Weights.IMAGENET1K_V1\",\n",
" apply_trp=True,\n",
" trp_depths=[1, 1, 1],\n",
" trp_planes=256,\n",
" trp_lambdas=[0.4, 0.2, 0.1],\n",
")\n",
"\n",
"main(args)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "a3KD3WXU3l-O"
},
"source": [
"# Fine-tuning a language model"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "JAscNNUD3l-P"
},
"source": [
"In this notebook, we'll see how to fine-tune one of the [🤗 Transformers](https://github.com/huggingface/transformers) model on a language modeling tasks. We will cover two types of language modeling tasks which are:\n",
"\n",
"- Causal language modeling: the model has to predict the next token in the sentence (so the labels are the same as the inputs shifted to the right). To make sure the model does not cheat, it gets an attention mask that will prevent it to access the tokens after token i when trying to predict the token i+1 in the sentence.\n",
"\n",
"\n",
"\n",
"- Masked language modeling: the model has to predict some tokens that are masked in the input. It still has access to the whole sentence, so it can use the tokens before and after the tokens masked to predict their value.\n",
"\n",
"\n",
"\n",
"We will see how to easily load and preprocess the dataset for each one of those tasks, and how to use the `Trainer` API to fine-tune a model on it.\n",
"\n",
"A script version of this notebook you can directly run on a distributed environment or on TPU is available in our [examples folder](https://github.com/huggingface/transformers/tree/master/examples)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "1r_n9OWV3l-Q"
},
"source": [
"## Preparing the dataset"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "kswRMhPc3l-Q"
},
"source": [
"For each of those tasks, we will use the [Wikitext 2]() dataset as an example. You can load it very easily with the 🤗 Datasets library."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "n2ZRs1cL3l-R"
},
"outputs": [],
"source": [
"from datasets import load_dataset\n",
"datasets = load_dataset('wikitext', 'wikitext-2-raw-v1')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "f1-9jepM3l-W"
},
"source": [
"You can replace the dataset above with any dataset hosted on [the hub](https://huggingface.co/datasets) or use your own files. Just uncomment the following cell and replace the paths with values that will lead to your files:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "uxSaGa_l3l-W"
},
"outputs": [],
"source": [
"# datasets = load_dataset(\"text\", data_files={\"train\": path_to_train.txt, \"validation\": path_to_validation.txt}"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jY1SwIrY3l-a"
},
"source": [
"You can also load datasets from a csv or a JSON file, see the [full documentation](https://huggingface.co/docs/datasets/loading_datasets.html#from-local-files) for more information."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "u3EtYfeHIrIz"
},
"source": [
"To access an actual element, you need to select a split first, then give an index:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "X6HrpprwIrIz"
},
"outputs": [],
"source": [
"datasets[\"train\"][10]"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "WHUmphG3IrI3"
},
"source": [
"To get a sense of what the data looks like, the following function will show some examples picked randomly in the dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ur5sNUcZ3l-g"
},
"outputs": [],
"source": [
"from datasets import ClassLabel\n",
"import random\n",
"import pandas as pd\n",
"from IPython.display import display, HTML\n",
"\n",
"def show_random_elements(dataset, num_examples=10):\n",
" assert num_examples <= len(dataset), \"Can't pick more elements than there are in the dataset.\"\n",
" picks = []\n",
" for _ in range(num_examples):\n",
" pick = random.randint(0, len(dataset)-1)\n",
" while pick in picks:\n",
" pick = random.randint(0, len(dataset)-1)\n",
" picks.append(pick)\n",
"\n",
" df = pd.DataFrame(dataset[picks])\n",
" for column, typ in dataset.features.items():\n",
" if isinstance(typ, ClassLabel):\n",
" df[column] = df[column].transform(lambda i: typ.names[i])\n",
" display(HTML(df.to_html()))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "1Uk8NROQ3l-k"
},
"outputs": [],
"source": [
"show_random_elements(datasets[\"train\"])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "CKerdF353l-o"
},
"source": [
"As we can see, some of the texts are a full paragraph of a Wikipedia article while others are just titles or empty lines."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "JEA1ju653l-p"
},
"source": [
"## Causal Language modeling"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "v5GTGKZS3l-q"
},
"source": [
"For causal language modeling (CLM) we are going to take all the texts in our dataset and concatenate them after they are tokenized. Then we will split them in examples of a certain sequence length. This way the model will receive chunks of contiguous text that may look like:\n",
"```\n",
"part of text 1\n",
"```\n",
"or\n",
"```\n",
"end of text 1 [BOS_TOKEN] beginning of text 2\n",
"```\n",
"depending on whether they span over several of the original texts in the dataset or not. The labels will be the same as the inputs, shifted to the left.\n",
"\n",
"We will use the [`distilgpt2`](https://huggingface.co/distilgpt2) model for this example. You can pick any of the checkpoints listed [here](https://huggingface.co/models?filter=causal-lm) instead:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "-WGBCO343l-q"
},
"outputs": [],
"source": [
"model_checkpoint = \"distilgpt2\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5io6fY_d3l-u"
},
"source": [
"To tokenize all our texts with the same vocabulary that was used when training the model, we have to download a pretrained tokenizer. This is all done by the `AutoTokenizer` class:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "iAYlS40Z3l-v"
},
"outputs": [],
"source": [
"from transformers import AutoTokenizer\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, use_fast=True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "rpOiBrJ13l-y"
},
"source": [
"We can now call the tokenizer on all our texts. This is very simple, using the [`map`](https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map) method from the Datasets library. First we define a function that call the tokenizer on our texts:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "lS2m25YM3l-z"
},
"outputs": [],
"source": [
"def tokenize_function(examples):\n",
" return tokenizer(examples[\"text\"])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "M9xVAa3s3l-2"
},
"source": [
"Then we apply it to all the splits in our `datasets` object, using `batched=True` and 4 processes to speed up the preprocessing. We won't need the `text` column afterward, so we discard it."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "NVAO0H8u3l-3"
},
"outputs": [],
"source": [
"tokenized_datasets = datasets.map(tokenize_function, batched=True, num_proc=4, remove_columns=[\"text\"])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8qik3J_C3l-7"
},
"source": [
"If we now look at an element of our datasets, we will see the text have been replaced by the `input_ids` the model will need:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "nYv_mcKk3l-7"
},
"outputs": [],
"source": [
"tokenized_datasets[\"train\"][1]"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "obvgcXda3l--"
},
"source": [
"Now for the harder part: we need to concatenate all our texts together then split the result in small chunks of a certain `block_size`. To do this, we will use the `map` method again, with the option `batched=True`. This option actually lets us change the number of examples in the datasets by returning a different number of examples than we got. This way, we can create our new samples from a batch of examples.\n",
"\n",
"First, we grab the maximum length our model was pretrained with. This might be a big too big to fit in your GPU RAM, so here we take a bit less at just 128."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "DVHs5aCA3l-_"
},
"outputs": [],
"source": [
"# block_size = tokenizer.model_max_length\n",
"block_size = 128"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "RpNfGiMw3l_A"
},
"source": [
"Then we write the preprocessing function that will group our texts:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "iaAJy5Hu3l_B"
},
"outputs": [],
"source": [
"def group_texts(examples):\n",
" # Concatenate all texts.\n",
" concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}\n",
" total_length = len(concatenated_examples[list(examples.keys())[0]])\n",
" # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can\n",
" # customize this part to your needs.\n",
" total_length = (total_length // block_size) * block_size\n",
" # Split by chunks of max_len.\n",
" result = {\n",
" k: [t[i : i + block_size] for i in range(0, total_length, block_size)]\n",
" for k, t in concatenated_examples.items()\n",
" }\n",
" result[\"labels\"] = result[\"input_ids\"].copy()\n",
" return result"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "LGJWXtNv3l_C"
},
"source": [
"First note that we duplicate the inputs for our labels. This is because the model of the 🤗 Transformers library apply the shifting to the right, so we don't need to do it manually.\n",
"\n",
"Also note that by default, the `map` method will send a batch of 1,000 examples to be treated by the preprocessing function. So here, we will drop the remainder to make the concatenated tokenized texts a multiple of `block_size` every 1,000 examples. You can adjust this behavior by passing a higher batch size (which will also be processed slower). You can also speed-up the preprocessing by using multiprocessing:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "gXUSfBrq3l_C"
},
"outputs": [],
"source": [
"lm_datasets = tokenized_datasets.map(\n",
" group_texts,\n",
" batched=True,\n",
" batch_size=1000,\n",
" num_proc=4,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6n84V8Gc3l_G"
},
"source": [
"And we can check our datasets have changed: now the samples contain chunks of `block_size` contiguous tokens, potentially spanning over several of our original texts."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "hTeGCLl_3l_G"
},
"outputs": [],
"source": [
"tokenizer.decode(lm_datasets[\"train\"][1][\"input_ids\"])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "iEmeQ7Xm3l_H"
},
"source": [
"Now that the data has been cleaned, we're ready to instantiate our `Trainer`. We will a model:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "sPqQA3TT3l_I"
},
"outputs": [],
"source": [
"from transformers import AutoModelForCausalLM\n",
"model = AutoModelForCausalLM.from_pretrained(model_checkpoint)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "VyPQTOF_3l_J"
},
"source": [
"And some `TrainingArguments`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "jElf8LJ33l_K"
},
"outputs": [],
"source": [
"from transformers import Trainer, TrainingArguments"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "YbSwEhQ63l_L"
},
"outputs": [],
"source": [
"model_name = model_checkpoint.split(\"/\")[-1]\n",
"training_args = TrainingArguments(\n",
" f\"{model_name}-finetuned-wikitext2\",\n",
" eval_strategy = \"epoch\",\n",
" learning_rate=2e-5,\n",
" weight_decay=0.01,\n",
" push_to_hub=True,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "dsx-8ebng3FI"
},
"source": [
"The last argument to setup everything so we can push the model to the [Hub](https://huggingface.co/models) regularly during training. Remove it if you didn't follow the installation steps at the top of the notebook. If you want to save your model locally in a name that is different than the name of the repository it will be pushed, or if you want to push your model under an organization and not your name space, use the `hub_model_id` argument to set the repo name (it needs to be the full name, including your namespace: for instance `\"sgugger/gpt-finetuned-wikitext2\"` or `\"huggingface/gpt-finetuned-wikitext2\"`)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "sZRbT9ui3l_N"
},
"source": [
"We pass along all of those to the `Trainer` class:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "OEuqwIra3l_N"
},
"outputs": [],
"source": [
"trainer = Trainer(\n",
" model=model,\n",
" args=training_args,\n",
" train_dataset=lm_datasets[\"train\"],\n",
" eval_dataset=lm_datasets[\"validation\"],\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6Vvz34Td3l_O"
},
"source": [
"And we can train our model:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "NyZvu_MF3l_P"
},
"outputs": [],
"source": [
"trainer.train()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "3APq-vUc3l_R"
},
"source": [
"Once the training is completed, we can evaluate our model and get its perplexity on the validation set like this:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "diKZnB1I3l_R"
},
"outputs": [],
"source": [
"import math\n",
"eval_results = trainer.evaluate()\n",
"print(f\"Perplexity: {math.exp(eval_results['eval_loss']):.2f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "wY82caEX3l_i"
},
"source": [
"You can now upload the result of the training to the Hub, just execute this instruction:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "KjTnsZXwg3FI"
},
"outputs": [],
"source": [
"trainer.push_to_hub()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "lKIc9Jr8g3FI"
},
"source": [
"You can now share this model with all your friends, family, favorite pets: they can all load it with the identifier `\"your-username/the-name-you-picked\"` so for instance:\n",
"\n",
"```python\n",
"from transformers import AutoModelForCausalLM\n",
"\n",
"model = AutoModelForCausalLM.from_pretrained(\"sgugger/my-awesome-model\")\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "q-EIELH43l_T"
},
"source": [
"## Masked language modeling"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "LWk97-Ny3l_T"
},
"source": [
"For masked language modeling (MLM) we are going to use the same preprocessing as before for our dataset with one additional step: we will randomly mask some tokens (by replacing them by `[MASK]`) and the labels will be adjusted to only include the masked tokens (we don't have to predict the non-masked tokens).\n",
"\n",
"We will use the [`distilroberta-base`](https://huggingface.co/distilroberta-base) model for this example. You can pick any of the checkpoints listed [here](https://huggingface.co/models?filter=masked-lm) instead:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "QRTpmyCc3l_T"
},
"outputs": [],
"source": [
"model_checkpoint = \"distilroberta-base\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "12F1ulgT3l_V"
},
"source": [
"We can apply the same tokenization function as before, we just need to update our tokenizer to use the checkpoint we just picked:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "h8RCYcvr3l_V"
},
"outputs": [],
"source": [
"tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, use_fast=True)\n",
"tokenized_datasets = datasets.map(tokenize_function, batched=True, num_proc=4, remove_columns=[\"text\"])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "MTuy8UUs3l_X"
},
"source": [
"And like before, we group texts together and chunk them in samples of length `block_size`. You can skip that step if your dataset is composed of individual sentences."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "LVYPMwEs3l_X"
},
"outputs": [],
"source": [
"lm_datasets = tokenized_datasets.map(\n",
" group_texts,\n",
" batched=True,\n",
" batch_size=1000,\n",
" num_proc=4,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "nFJ49iHJ3l_Z"
},
"source": [
"The rest is very similar to what we had, with two exceptions. First we use a model suitable for masked LM:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "PM10A9Za3l_Z"
},
"outputs": [],
"source": [
"from transformers import AutoModelForMaskedLM\n",
"model = AutoModelForMaskedLM.from_pretrained(model_checkpoint)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "emlofW7Yg3FJ"
},
"source": [
"We redefine our `TrainingArguments`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Hgd9wpjHg3FJ"
},
"outputs": [],
"source": [
"model_name = model_checkpoint.split(\"/\")[-1]\n",
"training_args = TrainingArguments(\n",
" f\"{model_name}-finetuned-wikitext2\",\n",
" eval_strategy = \"epoch\",\n",
" learning_rate=2e-5,\n",
" weight_decay=0.01,\n",
" push_to_hub=True,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "3tP4SZ3rg3FJ"
},
"source": [
"Like before, the last argument to setup everything so we can push the model to the [Hub](https://huggingface.co/models) regularly during training. Remove it if you didn't follow the installation steps at the top of the notebook. If you want to save your model locally in a name that is different than the name of the repository it will be pushed, or if you want to push your model under an organization and not your name space, use the `hub_model_id` argument to set the repo name (it needs to be the full name, including your namespace: for instance `\"sgugger/bert-finetuned-wikitext2\"` or `\"huggingface/bert-finetuned-wikitext2\"`)."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "z6uuUnvz3l_b"
},
"source": [
"Finally, we use a special `data_collator`. The `data_collator` is a function that is responsible of taking the samples and batching them in tensors. In the previous example, we had nothing special to do, so we just used the default for this argument. Here we want to do the random-masking. We could do it as a pre-processing step (like the tokenization) but then the tokens would always be masked the same way at each epoch. By doing this step inside the `data_collator`, we ensure this random masking is done in a new way each time we go over the data.\n",
"\n",
"To do this masking for us, the library provides a `DataCollatorForLanguageModeling`. We can adjust the probability of the masking:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "nRZ-5v_P3l_b"
},
"outputs": [],
"source": [
"from transformers import DataCollatorForLanguageModeling\n",
"data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=0.15)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "bqHnWcYC3l_d"
},
"source": [
"Then we just have to pass everything to `Trainer` and begin training:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "V-Y3gNqV3l_d"
},
"outputs": [],
"source": [
"trainer = Trainer(\n",
" model=model,\n",
" args=training_args,\n",
" train_dataset=lm_datasets[\"train\"],\n",
" eval_dataset=lm_datasets[\"validation\"],\n",
" data_collator=data_collator,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Y9TFqDG_3l_e"
},
"outputs": [],
"source": [
"trainer.train()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "KDBi0reX3l_g"
},
"source": [
"Like before, we can evaluate our model on the validation set. The perplexity is much lower than for the CLM objective because for the MLM objective, we only have to make predictions for the masked tokens (which represent 15% of the total here) while having access to the rest of the tokens. It's thus an easier task for the model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "4hSaANqj3l_g"
},
"outputs": [],
"source": [
"eval_results = trainer.evaluate()\n",
"print(f\"Perplexity: {math.exp(eval_results['eval_loss']):.2f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "TDmITtEYg3FK"
},
"source": [
"You can now upload the result of the training to the Hub, just execute this instruction:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "-3CFIYUrg3FK"
},
"outputs": [],
"source": [
"trainer.push_to_hub()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Da10yeZNg3FK"
},
"source": [
"You can now share this model with all your friends, family, favorite pets: they can all load it with the identifier `\"your-username/the-name-you-picked\"` so for instance:\n",
"\n",
"```python\n",
"from transformers import AutoModelForMaskedLM\n",
"\n",
"model = AutoModelForMaskedLM.from_pretrained(\"sgugger/my-awesome-model\")\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "RqqSgjeSg3FK"
},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.21"
}
},
"nbformat": 4,
"nbformat_minor": 0
} |