sino commited on
Commit
a0358f5
·
1 Parent(s): b2222c9

Delete src

Browse files
src/LMdecoder.py DELETED
@@ -1,170 +0,0 @@
1
- import copy
2
- from doctest import ELLIPSIS_MARKER
3
- from functools import partial
4
- import json
5
- from turtle import forward, shape
6
- import einops
7
- import torch
8
- from torch import nn
9
-
10
- from mmcls.models.backbones.vision_transformer import TransformerEncoderLayer
11
- from transformers import GPT2Model, GPT2Config,GPT2LMHeadModel,GPTNeoForCausalLM,GPTNeoModel, \
12
- BartModel, BartConfig, BartForCausalLM, BertForMaskedLM, AutoConfig, AutoModel, AutoModelForCausalLM, AutoTokenizer
13
- from transformers import BitsAndBytesConfig
14
-
15
- from peft import prepare_model_for_kbit_training
16
- from peft import LoraConfig
17
- from peft import get_peft_model
18
-
19
-
20
- from mmcv.cnn import build_norm_layer
21
- from mmcv.runner import BaseModule
22
- import math
23
- from ipdb import set_trace
24
-
25
- class mixEmbed(nn.Module):
26
- def __init__(self, lm_embed: nn.Embedding , audio_embeddings, *args, **kwargs) -> None:
27
- super().__init__(*args, **kwargs)
28
- self.lm_embed = lm_embed
29
- self.audio_embeddings = audio_embeddings # ugly but works without modifying raw model codes
30
-
31
- def forward(self, input_ids):
32
- text_ids = torch.clamp(input_ids.clone(), 0).long()
33
-
34
- au_ids = torch.clamp(-(input_ids.clone() + 1), 0).long()
35
- text_embeds = self.lm_embed(text_ids)
36
- au_embeds = self.audio_embeddings[au_ids]
37
- with torch.no_grad():
38
- embed_mask = (input_ids > 0)
39
- mix_embeds = au_embeds.clone()
40
- mix_embeds[embed_mask] = text_embeds[embed_mask]
41
- return mix_embeds
42
-
43
-
44
- class LMDecoder(nn.Module):
45
- def __init__(self,
46
- # num_patches=196,
47
- img_size=(80,512),
48
- patch_size:int=16,
49
- in_chans:int=3,
50
- embed_dim=1024, # encoder embed dim
51
- decoder_embed_dim=512,
52
- norm_cfg=dict(type='LN', eps=1e-6),
53
- # patch_resolution=14,
54
- decoder_type='gpt2',
55
- freeze_decoder=True,
56
- additional_layer:int=0,
57
- ):
58
- super().__init__()
59
- self.decoder_type = decoder_type
60
- self.load_lm()
61
-
62
- self.lm_embed = self.lm.get_input_embeddings()
63
- try:
64
- self.lm_pos_embed = self.lm.get_position_embeddings()
65
- except NotImplementedError:
66
- self.lm_pos_embed = None # rotrary embeds
67
-
68
-
69
- if hasattr(self.lm,'embed_dim'):
70
- self.embed_dim = self.lm.embed_dim
71
- else:
72
- self.embed_dim = decoder_embed_dim
73
-
74
- # self.asLM = asLM # if generates tokens rather than hidden states
75
- # if self.asLM: # TODO: 当年写这个是为啥?
76
- # self.lm.set_output_embeddings(nn.Linear(self.embed_dim, self.self.LMconfig.vocab_size, bias=False))
77
- self.freeze_decoder = False
78
- if True:
79
- for para in self.lm.parameters():
80
- para.requires_grad = False
81
-
82
- def load_lm(self):
83
- ## ---------------------LM setting----------------------
84
- __import__('pdb').set_trace()
85
- self.tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-hf', token='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')
86
- if self.tokenizer.pad_token is None:
87
- self.tokenizer.pad_token = self.tokenizer.eos_token
88
- self.LMconfig = AutoConfig.from_pretrained('meta-llama/Llama-2-7b-hf', token='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')
89
- self.lm = AutoModelForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf', token='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')
90
-
91
-
92
- def forward(self, input_ids, flatten_embs, attention_mask, labels, **kwargs):
93
- mix_embed = mixEmbed(self.lm_embed, flatten_embs)
94
- self.lm.set_input_embeddings(mix_embed) # modification of the lm embed
95
- output = self.lm(input_ids=input_ids, attention_mask=attention_mask, labels=labels, output_hidden_states=True, **kwargs)
96
- self.lm.set_input_embeddings(self.lm_embed) # modification of the lm embed
97
- return output
98
-
99
- def generate(self, input_ids, flatten_embs):
100
- mix_embed = mixEmbed(self.lm_embed, flatten_embs)
101
- self.lm.set_input_embeddings(mix_embed) # modification of the lm embed
102
- outputs = self.lm.generate(input_ids=input_ids, max_new_tokens=256, use_cache=False)
103
- # outputs = self.lm.generate(input_ids=input_ids,
104
- # max_new_tokens=1024,
105
- # do_sample=True,
106
- # temperature=1.5,
107
- # num_beams=1,
108
- # top_p=0.9,
109
- # top_k=3,
110
- # use_cache=False)
111
- self.lm.set_input_embeddings(self.lm_embed) # modification of the lm embed
112
- return outputs
113
- '''
114
- ## infer params
115
- max_input_tokens: 40
116
- batch_size_test: 16
117
- max_new_tokens: 64
118
- min_length: 2
119
- num_beams: 5
120
- length_penalty: -2.0
121
- top_p: 0.9
122
- top_k: 3
123
- no_repeat_ngram_size: 2
124
- apply_lemmatizer: False
125
- use_nucleus_sampling: True
126
- '''
127
-
128
- class LMDecoder_qlora(LMDecoder):
129
- def __init__(self,
130
- # num_patches=196,
131
- img_size=(80,512),
132
- patch_size:int=16,
133
- in_chans:int=3,
134
- embed_dim=1024, # encoder embed dim
135
- decoder_embed_dim=512,
136
- norm_cfg=dict(type='LN', eps=1e-6),
137
- # patch_resolution=14,
138
- decoder_type='gpt2',
139
- freeze_decoder=True,
140
- additional_layer:int=0,
141
- ):
142
- super().__init__( img_size, patch_size, in_chans, embed_dim, decoder_embed_dim, norm_cfg, decoder_type, freeze_decoder, additional_layer)
143
-
144
- def load_lm(self):
145
- self.tokenizer = AutoTokenizer.from_pretrained(self.decoder_type)
146
- self.LMconfig = AutoConfig.from_pretrained(self.decoder_type, trust_remote_code=True )
147
- double_quant_config = BitsAndBytesConfig(
148
- load_in_4bit=True,
149
- bnb_4bit_use_double_quant=True,
150
- )
151
- model = AutoModelForCausalLM.from_pretrained(self.decoder_type,
152
- # device_map='auto', # if remove, can not add lora
153
- # load_in_4bit=True,# if remove, can not add lora
154
- # # torch_dtype=torch.bfloat16,
155
- # quantization_config=double_quant_config, # if remove, can not add lora
156
- trust_remote_code=True )
157
-
158
- model.gradient_checkpointing_enable()
159
- model = prepare_model_for_kbit_training(model)
160
- lora_config = LoraConfig(
161
- r=8,
162
- lora_alpha=32,
163
- target_modules=["query_key_value"],
164
- lora_dropout=0.05,
165
- bias="none",
166
- task_type="CAUSAL_LM"
167
- )
168
-
169
- self.lm = get_peft_model(model, lora_config)
170
- self.lm.print_trainable_parameters()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/__init__.py DELETED
@@ -1,5 +0,0 @@
1
- from .spectprompt import SpectPrompt
2
- from .LMdecoder import LMDecoder
3
- from .mae_vit import MAEViT
4
- from .vision_transformer import VisionTransformer
5
- from .htsat import HTSAT_Swin_Transformer, create_htsat_model
 
 
 
 
 
 
src/__pycache__/LMdecoder.cpython-310.pyc DELETED
Binary file (7.71 kB)
 
src/__pycache__/LMdecoder.cpython-39.pyc DELETED
Binary file (4.82 kB)
 
src/__pycache__/__init__.cpython-310.pyc DELETED
Binary file (344 Bytes)
 
src/__pycache__/__init__.cpython-39.pyc DELETED
Binary file (432 Bytes)
 
src/__pycache__/comm_utils.cpython-39.pyc DELETED
Binary file (7.22 kB)
 
src/__pycache__/htsat.cpython-39.pyc DELETED
Binary file (34.7 kB)
 
src/__pycache__/mae_vit.cpython-310.pyc DELETED
Binary file (7.32 kB)
 
src/__pycache__/mae_vit.cpython-39.pyc DELETED
Binary file (7.88 kB)
 
src/__pycache__/spectprompt.cpython-310.pyc DELETED
Binary file (3.57 kB)
 
src/__pycache__/spectprompt.cpython-39.pyc DELETED
Binary file (14.6 kB)
 
src/__pycache__/vision_transformer.cpython-310.pyc DELETED
Binary file (5 kB)
 
src/__pycache__/vision_transformer.cpython-39.pyc DELETED
Binary file (4.97 kB)
 
src/comm_utils.py DELETED
@@ -1,255 +0,0 @@
1
- """
2
- This file contains primitives for multi-gpu communication.
3
- This is useful when doing distributed training.
4
- """
5
-
6
- import functools
7
- import logging
8
- import numpy as np
9
- import pickle
10
- import torch
11
- import torch.distributed as dist
12
-
13
- _LOCAL_PROCESS_GROUP = None
14
- """
15
- A torch process group which only includes processes that on the same machine as the current process.
16
- This variable is set when processes are spawned by `launch()` in "engine/launch.py".
17
- """
18
-
19
-
20
- def get_world_size() -> int:
21
- if not dist.is_available():
22
- return 1
23
- if not dist.is_initialized():
24
- return 1
25
- return dist.get_world_size()
26
-
27
-
28
- def get_rank() -> int:
29
- if not dist.is_available():
30
- return 0
31
- if not dist.is_initialized():
32
- return 0
33
- return dist.get_rank()
34
-
35
-
36
- def get_local_rank() -> int:
37
- """
38
- Returns:
39
- The rank of the current process within the local (per-machine) process group.
40
- """
41
- if not dist.is_available():
42
- return 0
43
- if not dist.is_initialized():
44
- return 0
45
- assert _LOCAL_PROCESS_GROUP is not None
46
- return dist.get_rank(group=_LOCAL_PROCESS_GROUP)
47
-
48
-
49
- def get_local_size() -> int:
50
- """
51
- Returns:
52
- The size of the per-machine process group,
53
- i.e. the number of processes per machine.
54
- """
55
- if not dist.is_available():
56
- return 1
57
- if not dist.is_initialized():
58
- return 1
59
- return dist.get_world_size(group=_LOCAL_PROCESS_GROUP)
60
-
61
-
62
- def is_main_process() -> bool:
63
- return get_rank() == 0
64
-
65
-
66
- def synchronize():
67
- """
68
- Helper function to synchronize (barrier) among all processes when
69
- using distributed training
70
- """
71
- if not dist.is_available():
72
- return
73
- if not dist.is_initialized():
74
- return
75
- world_size = dist.get_world_size()
76
- if world_size == 1:
77
- return
78
- dist.barrier()
79
-
80
-
81
- @functools.lru_cache()
82
- def _get_global_gloo_group():
83
- """
84
- Return a process group based on gloo backend, containing all the ranks
85
- The result is cached.
86
- """
87
- if dist.get_backend() == "nccl":
88
- return dist.new_group(backend="gloo")
89
- else:
90
- return dist.group.WORLD
91
-
92
-
93
- def _serialize_to_tensor(data, group):
94
- backend = dist.get_backend(group)
95
- assert backend in ["gloo", "nccl"]
96
- device = torch.device("cpu" if backend == "gloo" else "cuda")
97
-
98
- buffer = pickle.dumps(data)
99
- if len(buffer) > 1024 ** 3:
100
- logger = logging.getLogger(__name__)
101
- logger.warning(
102
- "Rank {} trying to all-gather {:.2f} GB of data on device {}".format(
103
- get_rank(), len(buffer) / (1024 ** 3), device
104
- )
105
- )
106
- storage = torch.ByteStorage.from_buffer(buffer)
107
- tensor = torch.ByteTensor(storage).to(device=device)
108
- return tensor
109
-
110
-
111
- def _pad_to_largest_tensor(tensor, group):
112
- """
113
- Returns:
114
- list[int]: size of the tensor, on each rank
115
- Tensor: padded tensor that has the max size
116
- """
117
- world_size = dist.get_world_size(group=group)
118
- assert (
119
- world_size >= 1
120
- ), "comm.gather/all_gather must be called from ranks within the given group!"
121
- local_size = torch.tensor([tensor.numel()], dtype=torch.int64, device=tensor.device)
122
- size_list = [
123
- torch.zeros([1], dtype=torch.int64, device=tensor.device) for _ in range(world_size)
124
- ]
125
- dist.all_gather(size_list, local_size, group=group)
126
- size_list = [int(size.item()) for size in size_list]
127
-
128
- max_size = max(size_list)
129
-
130
- # we pad the tensor because torch all_gather does not support
131
- # gathering tensors of different shapes
132
- if local_size != max_size:
133
- padding = torch.zeros((max_size - local_size,), dtype=torch.uint8, device=tensor.device)
134
- tensor = torch.cat((tensor, padding), dim=0)
135
- return size_list, tensor
136
-
137
-
138
- def all_gather(data, group=None):
139
- """
140
- Run all_gather on arbitrary picklable data (not necessarily tensors).
141
- Args:
142
- data: any picklable object
143
- group: a torch process group. By default, will use a group which
144
- contains all ranks on gloo backend.
145
- Returns:
146
- list[data]: list of data gathered from each rank
147
- """
148
- if get_world_size() == 1:
149
- return [data]
150
- if group is None:
151
- group = _get_global_gloo_group()
152
- if dist.get_world_size(group) == 1:
153
- return [data]
154
-
155
- tensor = _serialize_to_tensor(data, group)
156
-
157
- size_list, tensor = _pad_to_largest_tensor(tensor, group)
158
- max_size = max(size_list)
159
-
160
- # receiving Tensor from all ranks
161
- tensor_list = [
162
- torch.empty((max_size,), dtype=torch.uint8, device=tensor.device) for _ in size_list
163
- ]
164
- dist.all_gather(tensor_list, tensor, group=group)
165
-
166
- data_list = []
167
- for size, tensor in zip(size_list, tensor_list):
168
- buffer = tensor.cpu().numpy().tobytes()[:size]
169
- data_list.append(pickle.loads(buffer))
170
-
171
- return data_list
172
-
173
-
174
- def gather(data, dst=0, group=None):
175
- """
176
- Run gather on arbitrary picklable data (not necessarily tensors).
177
- Args:
178
- data: any picklable object
179
- dst (int): destination rank
180
- group: a torch process group. By default, will use a group which
181
- contains all ranks on gloo backend.
182
- Returns:
183
- list[data]: on dst, a list of data gathered from each rank. Otherwise,
184
- an empty list.
185
- """
186
- if get_world_size() == 1:
187
- return [data]
188
- if group is None:
189
- group = _get_global_gloo_group()
190
- if dist.get_world_size(group=group) == 1:
191
- return [data]
192
- rank = dist.get_rank(group=group)
193
-
194
- tensor = _serialize_to_tensor(data, group)
195
- size_list, tensor = _pad_to_largest_tensor(tensor, group)
196
-
197
- # receiving Tensor from all ranks
198
- if rank == dst:
199
- max_size = max(size_list)
200
- tensor_list = [
201
- torch.empty((max_size,), dtype=torch.uint8, device=tensor.device) for _ in size_list
202
- ]
203
- dist.gather(tensor, tensor_list, dst=dst, group=group)
204
-
205
- data_list = []
206
- for size, tensor in zip(size_list, tensor_list):
207
- buffer = tensor.cpu().numpy().tobytes()[:size]
208
- data_list.append(pickle.loads(buffer))
209
- return data_list
210
- else:
211
- dist.gather(tensor, [], dst=dst, group=group)
212
- return []
213
-
214
-
215
- def shared_random_seed():
216
- """
217
- Returns:
218
- int: a random number that is the same across all workers.
219
- If workers need a shared RNG, they can use this shared seed to
220
- create one.
221
- All workers must call this function, otherwise it will deadlock.
222
- """
223
- ints = np.random.randint(2 ** 31)
224
- all_ints = all_gather(ints)
225
- return all_ints[0]
226
-
227
-
228
- def reduce_dict(input_dict, average=True):
229
- """
230
- Reduce the values in the dictionary from all processes so that process with rank
231
- 0 has the reduced results.
232
- Args:
233
- input_dict (dict): inputs to be reduced. All the values must be scalar CUDA Tensor.
234
- average (bool): whether to do average or sum
235
- Returns:
236
- a dict with the same keys as input_dict, after reduction.
237
- """
238
- world_size = get_world_size()
239
- if world_size < 2:
240
- return input_dict
241
- with torch.no_grad():
242
- names = []
243
- values = []
244
- # sort the keys so that they are consistent across processes
245
- for k in sorted(input_dict.keys()):
246
- names.append(k)
247
- values.append(input_dict[k])
248
- values = torch.stack(values, dim=0)
249
- dist.reduce(values, dst=0)
250
- if dist.get_rank() == 0 and average:
251
- # only main process gets accumulated, so only divide by
252
- # world_size in this case
253
- values /= world_size
254
- reduced_dict = {k: v for k, v in zip(names, values)}
255
- return reduced_dict
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/htsat.py DELETED
@@ -1,1249 +0,0 @@
1
- # Ke Chen
2
3
- # HTS-AT: A HIERARCHICAL TOKEN-SEMANTIC AUDIO TRANSFORMER FOR SOUND CLASSIFICATION AND DETECTION
4
- # Some layers designed on the model
5
- # below codes are based and referred from https://github.com/microsoft/Swin-Transformer
6
- # Swin Transformer for Computer Vision: https://arxiv.org/pdf/2103.14030.pdf
7
-
8
- import torch
9
- import torch.nn as nn
10
- import torch.nn.functional as F
11
- from itertools import repeat
12
- import collections.abc
13
- import math
14
- import warnings
15
-
16
- from torch.nn.init import _calculate_fan_in_and_fan_out
17
- import torch.utils.checkpoint as checkpoint
18
-
19
- import random
20
-
21
- from torchlibrosa.stft import Spectrogram, LogmelFilterBank
22
- from torchlibrosa.augmentation import SpecAugmentation
23
- from einops import rearrange
24
- from itertools import repeat
25
- # from .utils import interpolate
26
-
27
- # from .feature_fusion import iAFF, AFF, DAF
28
-
29
-
30
- '''
31
- Feature Fusion for Varible-Length Data Processing
32
- AFF/iAFF is referred and modified from https://github.com/YimianDai/open-aff/blob/master/aff_pytorch/aff_net/fusion.py
33
- According to the paper: Yimian Dai et al, Attentional Feature Fusion, IEEE Winter Conference on Applications of Computer Vision, WACV 2021
34
- '''
35
-
36
- class DAF(nn.Module):
37
- '''
38
- 直接相加 DirectAddFuse
39
- '''
40
-
41
- def __init__(self):
42
- super(DAF, self).__init__()
43
-
44
- def forward(self, x, residual):
45
- return x + residual
46
-
47
-
48
- class iAFF(nn.Module):
49
- '''
50
- 多特征融合 iAFF
51
- '''
52
-
53
- def __init__(self, channels=64, r=4, type='2D'):
54
- super(iAFF, self).__init__()
55
- inter_channels = int(channels // r)
56
-
57
- if type == '1D':
58
- # 本地注意力
59
- self.local_att = nn.Sequential(
60
- nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
61
- nn.BatchNorm1d(inter_channels),
62
- nn.ReLU(inplace=True),
63
- nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
64
- nn.BatchNorm1d(channels),
65
- )
66
-
67
- # 全局注意力
68
- self.global_att = nn.Sequential(
69
- nn.AdaptiveAvgPool1d(1),
70
- nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
71
- nn.BatchNorm1d(inter_channels),
72
- nn.ReLU(inplace=True),
73
- nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
74
- nn.BatchNorm1d(channels),
75
- )
76
-
77
- # 第二次本地注意力
78
- self.local_att2 = nn.Sequential(
79
- nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
80
- nn.BatchNorm1d(inter_channels),
81
- nn.ReLU(inplace=True),
82
- nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
83
- nn.BatchNorm1d(channels),
84
- )
85
- # 第二次全局注意力
86
- self.global_att2 = nn.Sequential(
87
- nn.AdaptiveAvgPool1d(1),
88
- nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
89
- nn.BatchNorm1d(inter_channels),
90
- nn.ReLU(inplace=True),
91
- nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
92
- nn.BatchNorm1d(channels),
93
- )
94
- elif type == '2D':
95
- # 本地注意力
96
- self.local_att = nn.Sequential(
97
- nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
98
- nn.BatchNorm2d(inter_channels),
99
- nn.ReLU(inplace=True),
100
- nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
101
- nn.BatchNorm2d(channels),
102
- )
103
-
104
- # 全局注意力
105
- self.global_att = nn.Sequential(
106
- nn.AdaptiveAvgPool2d(1),
107
- nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
108
- nn.BatchNorm2d(inter_channels),
109
- nn.ReLU(inplace=True),
110
- nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
111
- nn.BatchNorm2d(channels),
112
- )
113
-
114
- # 第二次本地注意力
115
- self.local_att2 = nn.Sequential(
116
- nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
117
- nn.BatchNorm2d(inter_channels),
118
- nn.ReLU(inplace=True),
119
- nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
120
- nn.BatchNorm2d(channels),
121
- )
122
- # 第二次全局注意力
123
- self.global_att2 = nn.Sequential(
124
- nn.AdaptiveAvgPool2d(1),
125
- nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
126
- nn.BatchNorm2d(inter_channels),
127
- nn.ReLU(inplace=True),
128
- nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
129
- nn.BatchNorm2d(channels),
130
- )
131
- else:
132
- raise f'the type is not supported'
133
-
134
- self.sigmoid = nn.Sigmoid()
135
-
136
- def forward(self, x, residual):
137
- flag = False
138
- xa = x + residual
139
- if xa.size(0) == 1:
140
- xa = torch.cat([xa,xa],dim=0)
141
- flag = True
142
- xl = self.local_att(xa)
143
- xg = self.global_att(xa)
144
- xlg = xl + xg
145
- wei = self.sigmoid(xlg)
146
- xi = x * wei + residual * (1 - wei)
147
-
148
- xl2 = self.local_att2(xi)
149
- xg2 = self.global_att(xi)
150
- xlg2 = xl2 + xg2
151
- wei2 = self.sigmoid(xlg2)
152
- xo = x * wei2 + residual * (1 - wei2)
153
- if flag:
154
- xo = xo[0].unsqueeze(0)
155
- return xo
156
-
157
-
158
- class AFF(nn.Module):
159
- '''
160
- 多特征融合 AFF
161
- '''
162
-
163
- def __init__(self, channels=64, r=4, type='2D'):
164
- super(AFF, self).__init__()
165
- inter_channels = int(channels // r)
166
-
167
- if type == '1D':
168
- self.local_att = nn.Sequential(
169
- nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
170
- nn.BatchNorm1d(inter_channels),
171
- nn.ReLU(inplace=True),
172
- nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
173
- nn.BatchNorm1d(channels),
174
- )
175
- self.global_att = nn.Sequential(
176
- nn.AdaptiveAvgPool1d(1),
177
- nn.Conv1d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
178
- nn.BatchNorm1d(inter_channels),
179
- nn.ReLU(inplace=True),
180
- nn.Conv1d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
181
- nn.BatchNorm1d(channels),
182
- )
183
- elif type == '2D':
184
- self.local_att = nn.Sequential(
185
- nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
186
- nn.BatchNorm2d(inter_channels),
187
- nn.ReLU(inplace=True),
188
- nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
189
- nn.BatchNorm2d(channels),
190
- )
191
- self.global_att = nn.Sequential(
192
- nn.AdaptiveAvgPool2d(1),
193
- nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
194
- nn.BatchNorm2d(inter_channels),
195
- nn.ReLU(inplace=True),
196
- nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
197
- nn.BatchNorm2d(channels),
198
- )
199
- else:
200
- raise f'the type is not supported.'
201
-
202
- self.sigmoid = nn.Sigmoid()
203
-
204
- def forward(self, x, residual):
205
- flag = False
206
- xa = x + residual
207
- if xa.size(0) == 1:
208
- xa = torch.cat([xa,xa],dim=0)
209
- flag = True
210
- xl = self.local_att(xa)
211
- xg = self.global_att(xa)
212
- xlg = xl + xg
213
- wei = self.sigmoid(xlg)
214
- xo = 2 * x * wei + 2 * residual * (1 - wei)
215
- if flag:
216
- xo = xo[0].unsqueeze(0)
217
- return xo
218
-
219
-
220
- # .utils
221
-
222
- def interpolate(x, ratio):
223
- """Interpolate data in time domain. This is used to compensate the
224
- resolution reduction in downsampling of a CNN.
225
-
226
- Args:
227
- x: (batch_size, time_steps, classes_num)
228
- ratio: int, ratio to interpolate
229
- Returns:
230
- upsampled: (batch_size, time_steps * ratio, classes_num)
231
- """
232
- (batch_size, time_steps, classes_num) = x.shape
233
- upsampled = x[:, :, None, :].repeat(1, 1, ratio, 1)
234
- upsampled = upsampled.reshape(batch_size, time_steps * ratio, classes_num)
235
- return upsampled
236
-
237
- def do_mixup(x, mixup_lambda):
238
- """
239
- Args:
240
- x: (batch_size , ...)
241
- mixup_lambda: (batch_size,)
242
- Returns:
243
- out: (batch_size, ...)
244
- """
245
- out = (
246
- x.transpose(0, -1) * mixup_lambda
247
- + torch.flip(x, dims=[0]).transpose(0, -1) * (1 - mixup_lambda)
248
- ).transpose(0, -1)
249
- return out
250
-
251
- # from PyTorch internals
252
- def _ntuple(n):
253
- def parse(x):
254
- if isinstance(x, collections.abc.Iterable):
255
- return x
256
- return tuple(repeat(x, n))
257
- return parse
258
-
259
- to_1tuple = _ntuple(1)
260
- to_2tuple = _ntuple(2)
261
- to_3tuple = _ntuple(3)
262
- to_4tuple = _ntuple(4)
263
- to_ntuple = _ntuple
264
-
265
- def drop_path(x, drop_prob: float = 0., training: bool = False):
266
- """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
267
- This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
268
- the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
269
- See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
270
- changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
271
- 'survival rate' as the argument.
272
- """
273
- if drop_prob == 0. or not training:
274
- return x
275
- keep_prob = 1 - drop_prob
276
- shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
277
- random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
278
- random_tensor.floor_() # binarize
279
- output = x.div(keep_prob) * random_tensor
280
- return output
281
-
282
-
283
- class DropPath(nn.Module):
284
- """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
285
- """
286
- def __init__(self, drop_prob=None):
287
- super(DropPath, self).__init__()
288
- self.drop_prob = drop_prob
289
-
290
- def forward(self, x):
291
- return drop_path(x, self.drop_prob, self.training)
292
-
293
- class PatchEmbed(nn.Module):
294
- """ 2D Image to Patch Embedding
295
- """
296
- def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True, patch_stride = 16,
297
- enable_fusion=False, fusion_type='None'):
298
- super().__init__()
299
- img_size = to_2tuple(img_size)
300
- patch_size = to_2tuple(patch_size)
301
- patch_stride = to_2tuple(patch_stride)
302
- self.img_size = img_size
303
- self.patch_size = patch_size
304
- self.patch_stride = patch_stride
305
- self.grid_size = (img_size[0] // patch_stride[0], img_size[1] // patch_stride[1])
306
- self.num_patches = self.grid_size[0] * self.grid_size[1]
307
- self.flatten = flatten
308
- self.in_chans = in_chans
309
- self.embed_dim = embed_dim
310
-
311
- self.enable_fusion = enable_fusion
312
- self.fusion_type = fusion_type
313
-
314
- padding = ((patch_size[0] - patch_stride[0]) // 2, (patch_size[1] - patch_stride[1]) // 2)
315
-
316
- if (self.enable_fusion) and (self.fusion_type == 'channel_map'):
317
- self.proj = nn.Conv2d(in_chans*4, embed_dim, kernel_size=patch_size, stride=patch_stride, padding=padding)
318
- else:
319
- self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_stride, padding=padding)
320
- self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
321
-
322
- if (self.enable_fusion) and (self.fusion_type in ['daf_2d','aff_2d','iaff_2d']):
323
- self.mel_conv2d = nn.Conv2d(in_chans, embed_dim, kernel_size=(patch_size[0], patch_size[1]*3), stride=(patch_stride[0], patch_stride[1] * 3), padding=padding)
324
- if self.fusion_type == 'daf_2d':
325
- self.fusion_model = DAF()
326
- elif self.fusion_type == 'aff_2d':
327
- self.fusion_model = AFF(channels=embed_dim, type='2D')
328
- elif self.fusion_type == 'iaff_2d':
329
- self.fusion_model = iAFF(channels=embed_dim, type='2D')
330
- def forward(self, x, longer_idx = None):
331
- if (self.enable_fusion) and (self.fusion_type in ['daf_2d','aff_2d','iaff_2d']):
332
- global_x = x[:,0:1,:,:]
333
-
334
-
335
- # global processing
336
- B, C, H, W = global_x.shape
337
- assert H == self.img_size[0] and W == self.img_size[1], \
338
- f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
339
- global_x = self.proj(global_x)
340
- TW = global_x.size(-1)
341
- if len(longer_idx) > 0:
342
- # local processing
343
- local_x = x[longer_idx,1:,:,:].contiguous()
344
- B, C, H, W = local_x.shape
345
- local_x = local_x.view(B*C,1,H,W)
346
- local_x = self.mel_conv2d(local_x)
347
- local_x = local_x.view(B,C,local_x.size(1),local_x.size(2),local_x.size(3))
348
- local_x = local_x.permute((0,2,3,1,4)).contiguous().flatten(3)
349
- TB,TC,TH,_ = local_x.size()
350
- if local_x.size(-1) < TW:
351
- local_x = torch.cat([local_x, torch.zeros((TB,TC,TH,TW-local_x.size(-1)), device=global_x.device)], dim=-1)
352
- else:
353
- local_x = local_x[:,:,:,:TW]
354
-
355
- global_x[longer_idx] = self.fusion_model(global_x[longer_idx],local_x)
356
- x = global_x
357
- else:
358
- B, C, H, W = x.shape
359
- assert H == self.img_size[0] and W == self.img_size[1], \
360
- f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
361
- x = self.proj(x)
362
-
363
- if self.flatten:
364
- x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
365
- x = self.norm(x)
366
- return x
367
-
368
- class Mlp(nn.Module):
369
- """ MLP as used in Vision Transformer, MLP-Mixer and related networks
370
- """
371
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
372
- super().__init__()
373
- out_features = out_features or in_features
374
- hidden_features = hidden_features or in_features
375
- self.fc1 = nn.Linear(in_features, hidden_features)
376
- self.act = act_layer()
377
- self.fc2 = nn.Linear(hidden_features, out_features)
378
- self.drop = nn.Dropout(drop)
379
-
380
- def forward(self, x):
381
- x = self.fc1(x)
382
- x = self.act(x)
383
- x = self.drop(x)
384
- x = self.fc2(x)
385
- x = self.drop(x)
386
- return x
387
-
388
- def _no_grad_trunc_normal_(tensor, mean, std, a, b):
389
- # Cut & paste from PyTorch official master until it's in a few official releases - RW
390
- # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
391
- def norm_cdf(x):
392
- # Computes standard normal cumulative distribution function
393
- return (1. + math.erf(x / math.sqrt(2.))) / 2.
394
-
395
- if (mean < a - 2 * std) or (mean > b + 2 * std):
396
- warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
397
- "The distribution of values may be incorrect.",
398
- stacklevel=2)
399
-
400
- with torch.no_grad():
401
- # Values are generated by using a truncated uniform distribution and
402
- # then using the inverse CDF for the normal distribution.
403
- # Get upper and lower cdf values
404
- l = norm_cdf((a - mean) / std)
405
- u = norm_cdf((b - mean) / std)
406
-
407
- # Uniformly fill tensor with values from [l, u], then translate to
408
- # [2l-1, 2u-1].
409
- tensor.uniform_(2 * l - 1, 2 * u - 1)
410
-
411
- # Use inverse cdf transform for normal distribution to get truncated
412
- # standard normal
413
- tensor.erfinv_()
414
-
415
- # Transform to proper mean, std
416
- tensor.mul_(std * math.sqrt(2.))
417
- tensor.add_(mean)
418
-
419
- # Clamp to ensure it's in the proper range
420
- tensor.clamp_(min=a, max=b)
421
- return tensor
422
-
423
-
424
- def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
425
- # type: (Tensor, float, float, float, float) -> Tensor
426
- r"""Fills the input Tensor with values drawn from a truncated
427
- normal distribution. The values are effectively drawn from the
428
- normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
429
- with values outside :math:`[a, b]` redrawn until they are within
430
- the bounds. The method used for generating the random values works
431
- best when :math:`a \leq \text{mean} \leq b`.
432
- Args:
433
- tensor: an n-dimensional `torch.Tensor`
434
- mean: the mean of the normal distribution
435
- std: the standard deviation of the normal distribution
436
- a: the minimum cutoff value
437
- b: the maximum cutoff value
438
- Examples:
439
- >>> w = torch.empty(3, 5)
440
- >>> nn.init.trunc_normal_(w)
441
- """
442
- return _no_grad_trunc_normal_(tensor, mean, std, a, b)
443
-
444
-
445
- def variance_scaling_(tensor, scale=1.0, mode='fan_in', distribution='normal'):
446
- fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
447
- if mode == 'fan_in':
448
- denom = fan_in
449
- elif mode == 'fan_out':
450
- denom = fan_out
451
- elif mode == 'fan_avg':
452
- denom = (fan_in + fan_out) / 2
453
-
454
- variance = scale / denom
455
-
456
- if distribution == "truncated_normal":
457
- # constant is stddev of standard normal truncated to (-2, 2)
458
- trunc_normal_(tensor, std=math.sqrt(variance) / .87962566103423978)
459
- elif distribution == "normal":
460
- tensor.normal_(std=math.sqrt(variance))
461
- elif distribution == "uniform":
462
- bound = math.sqrt(3 * variance)
463
- tensor.uniform_(-bound, bound)
464
- else:
465
- raise ValueError(f"invalid distribution {distribution}")
466
-
467
-
468
- def lecun_normal_(tensor):
469
- variance_scaling_(tensor, mode='fan_in', distribution='truncated_normal')
470
-
471
- def window_partition(x, window_size):
472
- """
473
- Args:
474
- x: (B, H, W, C)
475
- window_size (int): window size
476
- Returns:
477
- windows: (num_windows*B, window_size, window_size, C)
478
- """
479
- B, H, W, C = x.shape
480
- x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
481
- windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
482
- return windows
483
-
484
-
485
- def window_reverse(windows, window_size, H, W):
486
- """
487
- Args:
488
- windows: (num_windows*B, window_size, window_size, C)
489
- window_size (int): Window size
490
- H (int): Height of image
491
- W (int): Width of image
492
- Returns:
493
- x: (B, H, W, C)
494
- """
495
- B = int(windows.shape[0] / (H * W / window_size / window_size))
496
- x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
497
- x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
498
- return x
499
-
500
-
501
- class WindowAttention(nn.Module):
502
- r""" Window based multi-head self attention (W-MSA) module with relative position bias.
503
- It supports both of shifted and non-shifted window.
504
- Args:
505
- dim (int): Number of input channels.
506
- window_size (tuple[int]): The height and width of the window.
507
- num_heads (int): Number of attention heads.
508
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
509
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
510
- attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
511
- proj_drop (float, optional): Dropout ratio of output. Default: 0.0
512
- """
513
-
514
- def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
515
-
516
- super().__init__()
517
- self.dim = dim
518
- self.window_size = window_size # Wh, Ww
519
- self.num_heads = num_heads
520
- head_dim = dim // num_heads
521
- self.scale = qk_scale or head_dim ** -0.5
522
-
523
- # define a parameter table of relative position bias
524
- self.relative_position_bias_table = nn.Parameter(
525
- torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
526
-
527
- # get pair-wise relative position index for each token inside the window
528
- coords_h = torch.arange(self.window_size[0])
529
- coords_w = torch.arange(self.window_size[1])
530
- coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
531
- coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
532
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
533
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
534
- relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
535
- relative_coords[:, :, 1] += self.window_size[1] - 1
536
- relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
537
- relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
538
- self.register_buffer("relative_position_index", relative_position_index)
539
-
540
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
541
- self.attn_drop = nn.Dropout(attn_drop)
542
- self.proj = nn.Linear(dim, dim)
543
- self.proj_drop = nn.Dropout(proj_drop)
544
-
545
- trunc_normal_(self.relative_position_bias_table, std=.02)
546
- self.softmax = nn.Softmax(dim=-1)
547
-
548
- def forward(self, x, mask=None):
549
- """
550
- Args:
551
- x: input features with shape of (num_windows*B, N, C)
552
- mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
553
- """
554
- B_, N, C = x.shape
555
- qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
556
- q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
557
-
558
- q = q * self.scale
559
- attn = (q @ k.transpose(-2, -1))
560
-
561
- relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
562
- self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
563
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
564
- attn = attn + relative_position_bias.unsqueeze(0)
565
-
566
- if mask is not None:
567
- nW = mask.shape[0]
568
- attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
569
- attn = attn.view(-1, self.num_heads, N, N)
570
- attn = self.softmax(attn)
571
- else:
572
- attn = self.softmax(attn)
573
-
574
- attn = self.attn_drop(attn)
575
-
576
- x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
577
- x = self.proj(x)
578
- x = self.proj_drop(x)
579
- return x, attn
580
-
581
- def extra_repr(self):
582
- return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
583
-
584
-
585
- # We use the model based on Swintransformer Block, therefore we can use the swin-transformer pretrained model
586
- class SwinTransformerBlock(nn.Module):
587
- r""" Swin Transformer Block.
588
- Args:
589
- dim (int): Number of input channels.
590
- input_resolution (tuple[int]): Input resulotion.
591
- num_heads (int): Number of attention heads.
592
- window_size (int): Window size.
593
- shift_size (int): Shift size for SW-MSA.
594
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
595
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
596
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
597
- drop (float, optional): Dropout rate. Default: 0.0
598
- attn_drop (float, optional): Attention dropout rate. Default: 0.0
599
- drop_path (float, optional): Stochastic depth rate. Default: 0.0
600
- act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
601
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
602
- """
603
-
604
- def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
605
- mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
606
- act_layer=nn.GELU, norm_layer=nn.LayerNorm, norm_before_mlp='ln'):
607
- super().__init__()
608
- self.dim = dim
609
- self.input_resolution = input_resolution
610
- self.num_heads = num_heads
611
- self.window_size = window_size
612
- self.shift_size = shift_size
613
- self.mlp_ratio = mlp_ratio
614
- self.norm_before_mlp = norm_before_mlp
615
- if min(self.input_resolution) <= self.window_size:
616
- # if window size is larger than input resolution, we don't partition windows
617
- self.shift_size = 0
618
- self.window_size = min(self.input_resolution)
619
- assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
620
-
621
- self.norm1 = norm_layer(dim)
622
- self.attn = WindowAttention(
623
- dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
624
- qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
625
-
626
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
627
- if self.norm_before_mlp == 'ln':
628
- self.norm2 = nn.LayerNorm(dim)
629
- elif self.norm_before_mlp == 'bn':
630
- self.norm2 = lambda x: nn.BatchNorm1d(dim)(x.transpose(1, 2)).transpose(1, 2)
631
- else:
632
- raise NotImplementedError
633
- mlp_hidden_dim = int(dim * mlp_ratio)
634
- self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
635
-
636
- if self.shift_size > 0:
637
- # calculate attention mask for SW-MSA
638
- H, W = self.input_resolution
639
- img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
640
- h_slices = (slice(0, -self.window_size),
641
- slice(-self.window_size, -self.shift_size),
642
- slice(-self.shift_size, None))
643
- w_slices = (slice(0, -self.window_size),
644
- slice(-self.window_size, -self.shift_size),
645
- slice(-self.shift_size, None))
646
- cnt = 0
647
- for h in h_slices:
648
- for w in w_slices:
649
- img_mask[:, h, w, :] = cnt
650
- cnt += 1
651
-
652
- mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
653
- mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
654
- attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
655
- attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
656
- else:
657
- attn_mask = None
658
-
659
- self.register_buffer("attn_mask", attn_mask)
660
-
661
- def forward(self, x):
662
- # pdb.set_trace()
663
- H, W = self.input_resolution
664
- # print("H: ", H)
665
- # print("W: ", W)
666
- # pdb.set_trace()
667
- B, L, C = x.shape
668
- # assert L == H * W, "input feature has wrong size"
669
-
670
- shortcut = x
671
- x = self.norm1(x)
672
- x = x.view(B, H, W, C)
673
-
674
- # cyclic shift
675
- if self.shift_size > 0:
676
- shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
677
- else:
678
- shifted_x = x
679
-
680
- # partition windows
681
- x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
682
- x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
683
-
684
- # W-MSA/SW-MSA
685
- attn_windows, attn = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
686
-
687
- # merge windows
688
- attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
689
- shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
690
-
691
- # reverse cyclic shift
692
- if self.shift_size > 0:
693
- x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
694
- else:
695
- x = shifted_x
696
- x = x.view(B, H * W, C)
697
-
698
- # FFN
699
- x = shortcut + self.drop_path(x)
700
- x = x + self.drop_path(self.mlp(self.norm2(x)))
701
-
702
- return x, attn
703
-
704
- def extra_repr(self):
705
- return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
706
- f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
707
-
708
-
709
-
710
- class PatchMerging(nn.Module):
711
- r""" Patch Merging Layer.
712
- Args:
713
- input_resolution (tuple[int]): Resolution of input feature.
714
- dim (int): Number of input channels.
715
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
716
- """
717
-
718
- def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
719
- super().__init__()
720
- self.input_resolution = input_resolution
721
- self.dim = dim
722
- self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
723
- self.norm = norm_layer(4 * dim)
724
-
725
- def forward(self, x):
726
- """
727
- x: B, H*W, C
728
- """
729
- H, W = self.input_resolution
730
- B, L, C = x.shape
731
- assert L == H * W, "input feature has wrong size"
732
- assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
733
-
734
- x = x.view(B, H, W, C)
735
-
736
- x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
737
- x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
738
- x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
739
- x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
740
- x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
741
- x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
742
-
743
- x = self.norm(x)
744
- x = self.reduction(x)
745
-
746
- return x
747
-
748
- def extra_repr(self):
749
- return f"input_resolution={self.input_resolution}, dim={self.dim}"
750
-
751
-
752
- class BasicLayer(nn.Module):
753
- """ A basic Swin Transformer layer for one stage.
754
- Args:
755
- dim (int): Number of input channels.
756
- input_resolution (tuple[int]): Input resolution.
757
- depth (int): Number of blocks.
758
- num_heads (int): Number of attention heads.
759
- window_size (int): Local window size.
760
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
761
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
762
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
763
- drop (float, optional): Dropout rate. Default: 0.0
764
- attn_drop (float, optional): Attention dropout rate. Default: 0.0
765
- drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
766
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
767
- downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
768
- use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
769
- """
770
-
771
- def __init__(self, dim, input_resolution, depth, num_heads, window_size,
772
- mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
773
- drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
774
- norm_before_mlp='ln'):
775
-
776
- super().__init__()
777
- self.dim = dim
778
- self.input_resolution = input_resolution
779
- self.depth = depth
780
- self.use_checkpoint = use_checkpoint
781
-
782
- # build blocks
783
- self.blocks = nn.ModuleList([
784
- SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
785
- num_heads=num_heads, window_size=window_size,
786
- shift_size=0 if (i % 2 == 0) else window_size // 2,
787
- mlp_ratio=mlp_ratio,
788
- qkv_bias=qkv_bias, qk_scale=qk_scale,
789
- drop=drop, attn_drop=attn_drop,
790
- drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
791
- norm_layer=norm_layer, norm_before_mlp=norm_before_mlp)
792
- for i in range(depth)])
793
-
794
- # patch merging layer
795
- if downsample is not None:
796
- self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
797
- else:
798
- self.downsample = None
799
-
800
- def forward(self, x):
801
- attns = []
802
- for blk in self.blocks:
803
- if self.use_checkpoint:
804
- x = checkpoint.checkpoint(blk, x)
805
- else:
806
- x, attn = blk(x)
807
- if not self.training:
808
- attns.append(attn.unsqueeze(0))
809
- if self.downsample is not None:
810
- x = self.downsample(x)
811
- if not self.training:
812
- attn = torch.cat(attns, dim = 0)
813
- attn = torch.mean(attn, dim = 0)
814
- return x, attn
815
-
816
- # if self.downsample is not None:
817
- # x = self.downsample(x)
818
- # if not self.training:
819
- # attn = torch.cat(attns, dim = 0)
820
- # attn = torch.mean(attn, dim = 0)
821
- # return x, attn
822
-
823
- def extra_repr(self):
824
- return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
825
-
826
-
827
- # The Core of HTSAT
828
- class HTSAT_Swin_Transformer(nn.Module):
829
- r"""HTSAT based on the Swin Transformer
830
- Args:
831
- spec_size (int | tuple(int)): Input Spectrogram size. Default 256
832
- patch_size (int | tuple(int)): Patch size. Default: 4
833
- path_stride (iot | tuple(int)): Patch Stride for Frequency and Time Axis. Default: 4
834
- in_chans (int): Number of input image channels. Default: 1 (mono)
835
- num_classes (int): Number of classes for classification head. Default: 527
836
- embed_dim (int): Patch embedding dimension. Default: 96
837
- depths (tuple(int)): Depth of each HTSAT-Swin Transformer layer.
838
- num_heads (tuple(int)): Number of attention heads in different layers.
839
- window_size (int): Window size. Default: 8
840
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
841
- qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
842
- qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
843
- drop_rate (float): Dropout rate. Default: 0
844
- attn_drop_rate (float): Attention dropout rate. Default: 0
845
- drop_path_rate (float): Stochastic depth rate. Default: 0.1
846
- norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
847
- ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
848
- patch_norm (bool): If True, add normalization after patch embedding. Default: True
849
- use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
850
- config (module): The configuration Module from config.py
851
- """
852
-
853
- def __init__(self, spec_size=256, patch_size=4, patch_stride=(4,4),
854
- in_chans=1, num_classes=527,
855
- embed_dim=96, depths=[2, 2, 6, 2], num_heads=[4, 8, 16, 32],
856
- window_size=8, mlp_ratio=4., qkv_bias=True, qk_scale=None,
857
- drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
858
- norm_layer=nn.LayerNorm,
859
- ape=False, patch_norm=True,
860
- use_checkpoint=False, norm_before_mlp='ln', config = None,
861
- enable_fusion = False, fusion_type = 'None', **kwargs):
862
- super(HTSAT_Swin_Transformer, self).__init__()
863
-
864
- self.config = config
865
- self.spec_size = spec_size
866
- self.patch_stride = patch_stride
867
- self.patch_size = patch_size
868
- self.window_size = window_size
869
- self.embed_dim = embed_dim
870
- self.depths = depths
871
- self.ape = ape
872
- self.in_chans = in_chans
873
- self.num_classes = num_classes
874
- self.num_heads = num_heads
875
- self.num_layers = len(self.depths)
876
- self.num_features = int(self.embed_dim * 2 ** (self.num_layers - 1))
877
-
878
- self.drop_rate = drop_rate
879
- self.attn_drop_rate = attn_drop_rate
880
- self.drop_path_rate = drop_path_rate
881
-
882
- self.qkv_bias = qkv_bias
883
- self.qk_scale = None
884
-
885
- self.patch_norm = patch_norm
886
- self.norm_layer = norm_layer if self.patch_norm else None
887
- self.norm_before_mlp = norm_before_mlp
888
- self.mlp_ratio = mlp_ratio
889
-
890
- self.use_checkpoint = use_checkpoint
891
-
892
- self.enable_fusion = enable_fusion
893
- self.fusion_type = fusion_type
894
-
895
- # process mel-spec ; used only once
896
- self.freq_ratio = self.spec_size // self.config.mel_bins
897
- window = 'hann'
898
- center = True
899
- pad_mode = 'reflect'
900
- ref = 1.0
901
- amin = 1e-10
902
- top_db = None
903
- self.interpolate_ratio = 32 # Downsampled ratio
904
- # Spectrogram extractor
905
- self.spectrogram_extractor = Spectrogram(n_fft=config.window_size, hop_length=config.hop_size,
906
- win_length=config.window_size, window=window, center=center, pad_mode=pad_mode,
907
- freeze_parameters=True)
908
- # Logmel feature extractor
909
- self.logmel_extractor = LogmelFilterBank(sr=config.sample_rate, n_fft=config.window_size,
910
- n_mels=config.mel_bins, fmin=config.fmin, fmax=config.fmax, ref=ref, amin=amin, top_db=top_db,
911
- freeze_parameters=True)
912
- # Spec augmenter
913
- self.spec_augmenter = SpecAugmentation(time_drop_width=64, time_stripes_num=2,
914
- freq_drop_width=8, freq_stripes_num=2) # 2 2
915
- self.bn0 = nn.BatchNorm2d(self.config.mel_bins)
916
-
917
-
918
- # split spctrogram into non-overlapping patches
919
- self.patch_embed = PatchEmbed(
920
- img_size=self.spec_size, patch_size=self.patch_size, in_chans=self.in_chans,
921
- embed_dim=self.embed_dim, norm_layer=self.norm_layer, patch_stride = patch_stride,
922
- enable_fusion=self.enable_fusion, fusion_type=self.fusion_type
923
- )
924
-
925
- num_patches = self.patch_embed.num_patches
926
- patches_resolution = self.patch_embed.grid_size
927
- self.patches_resolution = patches_resolution
928
-
929
- # absolute position embedding
930
- if self.ape:
931
- self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, self.embed_dim))
932
- trunc_normal_(self.absolute_pos_embed, std=.02)
933
-
934
- self.pos_drop = nn.Dropout(p=self.drop_rate)
935
-
936
- # stochastic depth
937
- dpr = [x.item() for x in torch.linspace(0, self.drop_path_rate, sum(self.depths))] # stochastic depth decay rule
938
-
939
- # build layers
940
- self.layers = nn.ModuleList()
941
- for i_layer in range(self.num_layers):
942
- layer = BasicLayer(dim=int(self.embed_dim * 2 ** i_layer),
943
- input_resolution=(patches_resolution[0] // (2 ** i_layer),
944
- patches_resolution[1] // (2 ** i_layer)),
945
- depth=self.depths[i_layer],
946
- num_heads=self.num_heads[i_layer],
947
- window_size=self.window_size,
948
- mlp_ratio=self.mlp_ratio,
949
- qkv_bias=self.qkv_bias, qk_scale=self.qk_scale,
950
- drop=self.drop_rate, attn_drop=self.attn_drop_rate,
951
- drop_path=dpr[sum(self.depths[:i_layer]):sum(self.depths[:i_layer + 1])],
952
- norm_layer=self.norm_layer,
953
- downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
954
- use_checkpoint=use_checkpoint,
955
- norm_before_mlp=self.norm_before_mlp)
956
- self.layers.append(layer)
957
-
958
- self.norm = self.norm_layer(self.num_features)
959
- self.avgpool = nn.AdaptiveAvgPool1d(1)
960
- self.maxpool = nn.AdaptiveMaxPool1d(1)
961
-
962
- SF = self.spec_size // (2 ** (len(self.depths) - 1)) // self.patch_stride[0] // self.freq_ratio
963
- self.tscam_conv = nn.Conv2d(
964
- in_channels = self.num_features,
965
- out_channels = self.num_classes,
966
- kernel_size = (SF,3),
967
- padding = (0,1)
968
- )
969
- self.head = nn.Linear(num_classes, num_classes)
970
-
971
- if (self.enable_fusion) and (self.fusion_type in ['daf_1d','aff_1d','iaff_1d']):
972
- self.mel_conv1d = nn.Sequential(
973
- nn.Conv1d(64, 64, kernel_size=5, stride=3, padding=2),
974
- nn.BatchNorm1d(64)
975
- )
976
- if self.fusion_type == 'daf_1d':
977
- self.fusion_model = DAF()
978
- elif self.fusion_type == 'aff_1d':
979
- self.fusion_model = AFF(channels=64, type='1D')
980
- elif self.fusion_type == 'iaff_1d':
981
- self.fusion_model = iAFF(channels=64, type='1D')
982
-
983
- self.apply(self._init_weights)
984
-
985
- def _init_weights(self, m):
986
- if isinstance(m, nn.Linear):
987
- trunc_normal_(m.weight, std=.02)
988
- if isinstance(m, nn.Linear) and m.bias is not None:
989
- nn.init.constant_(m.bias, 0)
990
- elif isinstance(m, nn.LayerNorm):
991
- nn.init.constant_(m.bias, 0)
992
- nn.init.constant_(m.weight, 1.0)
993
-
994
- @torch.jit.ignore
995
- def no_weight_decay(self):
996
- return {'absolute_pos_embed'}
997
-
998
- @torch.jit.ignore
999
- def no_weight_decay_keywords(self):
1000
- return {'relative_position_bias_table'}
1001
-
1002
-
1003
- def forward_features(self, x, longer_idx = None):
1004
- # A deprecated optimization for using a hierarchical output from different blocks
1005
-
1006
- frames_num = x.shape[2]
1007
- x = self.patch_embed(x, longer_idx = longer_idx)
1008
- if self.ape:
1009
- x = x + self.absolute_pos_embed
1010
- x = self.pos_drop(x)
1011
- for i, layer in enumerate(self.layers):
1012
- x, attn = layer(x)
1013
- # for x
1014
- x = self.norm(x)
1015
- B, N, C = x.shape
1016
- SF = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[0]
1017
- ST = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[1]
1018
- x = x.permute(0,2,1).contiguous().reshape(B, C, SF, ST)
1019
- B, C, F, T = x.shape
1020
- # group 2D CNN
1021
- c_freq_bin = F // self.freq_ratio
1022
- x = x.reshape(B, C, F // c_freq_bin, c_freq_bin, T)
1023
- x = x.permute(0,1,3,2,4).contiguous().reshape(B, C, c_freq_bin, -1)
1024
- # get latent_output
1025
- fine_grained_latent_output = torch.mean(x, dim = 2)
1026
- fine_grained_latent_output = interpolate(fine_grained_latent_output.permute(0,2,1).contiguous(), 8 * self.patch_stride[1])
1027
-
1028
- latent_output = self.avgpool(torch.flatten(x,2))
1029
- latent_output = torch.flatten(latent_output, 1)
1030
-
1031
- # display the attention map, if needed
1032
-
1033
- x = self.tscam_conv(x)
1034
- x = torch.flatten(x, 2) # B, C, T
1035
-
1036
- fpx = interpolate(torch.sigmoid(x).permute(0,2,1).contiguous(), 8 * self.patch_stride[1])
1037
-
1038
- x = self.avgpool(x)
1039
- x = torch.flatten(x, 1)
1040
-
1041
- output_dict = {
1042
- 'framewise_output': fpx, # already sigmoided
1043
- 'clipwise_output': torch.sigmoid(x),
1044
- 'fine_grained_embedding': fine_grained_latent_output,
1045
- 'embedding': latent_output
1046
- }
1047
-
1048
- return output_dict
1049
-
1050
- def crop_wav(self, x, crop_size, spe_pos = None):
1051
- time_steps = x.shape[2]
1052
- tx = torch.zeros(x.shape[0], x.shape[1], crop_size, x.shape[3]).to(x.device)
1053
- for i in range(len(x)):
1054
- if spe_pos is None:
1055
- crop_pos = random.randint(0, time_steps - crop_size - 1)
1056
- else:
1057
- crop_pos = spe_pos
1058
- tx[i][0] = x[i, 0, crop_pos:crop_pos + crop_size,:]
1059
- return tx
1060
-
1061
- # Reshape the wavform to a img size, if you want to use the pretrained swin transformer model
1062
- def reshape_wav2img(self, x):
1063
- B, C, T, F = x.shape
1064
- target_T = int(self.spec_size * self.freq_ratio)
1065
- target_F = self.spec_size // self.freq_ratio
1066
- assert T <= target_T and F <= target_F, "the wav size should less than or equal to the swin input size"
1067
- # to avoid bicubic zero error
1068
- if T < target_T:
1069
- x = nn.functional.interpolate(x, (target_T, x.shape[3]), mode="bicubic", align_corners=True)
1070
- if F < target_F:
1071
- x = nn.functional.interpolate(x, (x.shape[2], target_F), mode="bicubic", align_corners=True)
1072
- x = x.permute(0,1,3,2).contiguous()
1073
- x = x.reshape(x.shape[0], x.shape[1], x.shape[2], self.freq_ratio, x.shape[3] // self.freq_ratio)
1074
- # print(x.shape)
1075
- x = x.permute(0,1,3,2,4).contiguous()
1076
- x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3], x.shape[4])
1077
- return x
1078
-
1079
- # Repeat the wavform to a img size, if you want to use the pretrained swin transformer model
1080
- def repeat_wat2img(self, x, cur_pos):
1081
- B, C, T, F = x.shape
1082
- target_T = int(self.spec_size * self.freq_ratio)
1083
- target_F = self.spec_size // self.freq_ratio
1084
- assert T <= target_T and F <= target_F, "the wav size should less than or equal to the swin input size"
1085
- # to avoid bicubic zero error
1086
- if T < target_T:
1087
- x = nn.functional.interpolate(x, (target_T, x.shape[3]), mode="bicubic", align_corners=True)
1088
- if F < target_F:
1089
- x = nn.functional.interpolate(x, (x.shape[2], target_F), mode="bicubic", align_corners=True)
1090
- x = x.permute(0,1,3,2).contiguous() # B C F T
1091
- x = x[:,:,:,cur_pos:cur_pos + self.spec_size]
1092
- x = x.repeat(repeats = (1,1,4,1))
1093
- return x
1094
-
1095
- def forward_generator(self, x: torch.Tensor, mixup_lambda = None, infer_mode = False, device=None):# out_feat_keys: List[str] = None):
1096
-
1097
- n = int(x.shape[1]/480000)
1098
- assert n * 480000 == x.shape[1]
1099
- x = rearrange(x, 'b (n t) -> (b n) t', n=n)
1100
- if not self.enable_fusion:
1101
- # x = x["waveform"].to(device=device, non_blocking=True)
1102
- x = x.to(device=device, non_blocking=True)
1103
- x = self.spectrogram_extractor(x) # (batch_size, 1, time_steps, freq_bins)
1104
- x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
1105
- x = x.transpose(1, 3)
1106
- x = self.bn0(x)
1107
- x = x.transpose(1, 3)
1108
- if self.training:
1109
- x = self.spec_augmenter(x)
1110
-
1111
- if self.training and mixup_lambda is not None:
1112
- x = do_mixup(x, mixup_lambda)
1113
-
1114
- x = self.reshape_wav2img(x)
1115
- # output_dict = self.forward_features(x)
1116
-
1117
- # A deprecated optimization for using a hierarchical output from different blocks
1118
- longer_idx = None
1119
- frames_num = x.shape[2]
1120
- x = self.patch_embed(x, longer_idx = longer_idx)
1121
- if self.ape:
1122
- x = x + self.absolute_pos_embed
1123
- x = self.pos_drop(x)
1124
- for i, layer in enumerate(self.layers[:3]): # depth: [2,2,12,2]
1125
- if i == 2:
1126
- for blk in layer.blocks:
1127
- x, attn = blk(x)
1128
- # 512
1129
- x = rearrange(x, '(b n) t c -> b (n t) c', n=n)
1130
- x = x if (new_x:=(yield x)) is None else new_x
1131
- x = rearrange(x, 'b (n t) c -> (b n) t c', n=n)
1132
- else:
1133
- x, attn = layer(x)
1134
-
1135
-
1136
-
1137
- def forward(self, x: torch.Tensor, mixup_lambda = None, infer_mode = False, device=None):# out_feat_keys: List[str] = None):
1138
-
1139
- n = int(x.shape[1] / 480000)
1140
- assert n * 480000 == x.shape[1]
1141
- x = rearrange(x, 'b (n t) -> (b n) t', n = n)
1142
- if not self.enable_fusion:
1143
- # x = x["waveform"].to(device=device, non_blocking=True)
1144
- x = x.to(device=device, non_blocking=True)
1145
- x = self.spectrogram_extractor(x) # (batch_size, 1, time_steps, freq_bins)
1146
- x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
1147
- x = x.transpose(1, 3)
1148
- x = self.bn0(x)
1149
- x = x.transpose(1, 3)
1150
- if self.training:
1151
- x = self.spec_augmenter(x)
1152
-
1153
- if self.training and mixup_lambda is not None:
1154
- x = do_mixup(x, mixup_lambda)
1155
-
1156
- x = self.reshape_wav2img(x)
1157
- # x = self.forward_features(x)
1158
-
1159
- longer_idx = None
1160
- frames_num = x.shape[2]
1161
- x = self.patch_embed(x, longer_idx = longer_idx)
1162
- if self.ape:
1163
- x = x + self.absolute_pos_embed
1164
- x = self.pos_drop(x)
1165
- for i, layer in enumerate(self.layers):
1166
- x, attn = layer(x)
1167
- # for x
1168
- x = self.norm(x)
1169
- x = rearrange(x, '(b n) t c -> b (n t) c', n = n)
1170
- return x
1171
-
1172
- # B, N, C = x.shape
1173
- # SF = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[0]
1174
- # ST = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[1]
1175
- # x = x.permute(0,2,1).contiguous().reshape(B, C, SF, ST)
1176
- # B, C, F, T = x.shape
1177
- # # group 2D CNN
1178
- # c_freq_bin = F // self.freq_ratio
1179
- # x = x.reshape(B, C, F // c_freq_bin, c_freq_bin, T)
1180
- # x = x.permute(0,1,3,2,4).contiguous().reshape(B, C, c_freq_bin, -1)
1181
- # # get latent_output
1182
- # fine_grained_latent_output = torch.mean(x, dim = 2)
1183
- # fine_grained_latent_output = interpolate(fine_grained_latent_output.permute(0,2,1).contiguous(), 8 * self.patch_stride[1])
1184
-
1185
- # latent_output = self.avgpool(torch.flatten(x,2))
1186
- # latent_output = torch.flatten(latent_output, 1)
1187
-
1188
- # # display the attention map, if needed
1189
-
1190
- # x = self.tscam_conv(x)
1191
- # x = torch.flatten(x, 2) # B, C, T
1192
-
1193
- # fpx = interpolate(torch.sigmoid(x).permute(0,2,1).contiguous(), 8 * self.patch_stride[1])
1194
-
1195
- # x = self.avgpool(x)
1196
- # x = torch.flatten(x, 1)
1197
- # return x
1198
-
1199
- def create_htsat_model(audio_cfg, enable_fusion=False, fusion_type='None'):
1200
- try:
1201
-
1202
- assert audio_cfg.model_name in ["tiny", "base", "large"], "model name for HTS-AT is wrong!"
1203
- if audio_cfg.model_name == "tiny":
1204
- model = HTSAT_Swin_Transformer(
1205
- spec_size=256,
1206
- patch_size=4,
1207
- patch_stride=(4,4),
1208
- num_classes=audio_cfg.class_num,
1209
- embed_dim=96,
1210
- depths=[2,2,6,2],
1211
- num_heads=[4,8,16,32],
1212
- window_size=8,
1213
- config = audio_cfg,
1214
- enable_fusion = enable_fusion,
1215
- fusion_type = fusion_type
1216
- )
1217
- elif audio_cfg.model_name == "base":
1218
- model = HTSAT_Swin_Transformer(
1219
- spec_size=256,
1220
- patch_size=4,
1221
- patch_stride=(4,4),
1222
- num_classes=audio_cfg.class_num,
1223
- embed_dim=128,
1224
- depths=[2,2,12,2],
1225
- num_heads=[4,8,16,32],
1226
- window_size=8,
1227
- config = audio_cfg,
1228
- enable_fusion = enable_fusion,
1229
- fusion_type = fusion_type
1230
- )
1231
- elif audio_cfg.model_name == "large":
1232
- model = HTSAT_Swin_Transformer(
1233
- spec_size=256,
1234
- patch_size=4,
1235
- patch_stride=(4,4),
1236
- num_classes=audio_cfg.class_num,
1237
- embed_dim=256,
1238
- depths=[2,2,12,2],
1239
- num_heads=[4,8,16,32],
1240
- window_size=8,
1241
- config = audio_cfg,
1242
- enable_fusion = enable_fusion,
1243
- fusion_type = fusion_type
1244
- )
1245
-
1246
- return model
1247
- except:
1248
- raise RuntimeError(f'Import Model for {audio_cfg.model_name} not found, or the audio cfg parameters are not enough.')
1249
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/mae_vit.py DELETED
@@ -1,303 +0,0 @@
1
- import torch
2
- from mmcls.models import VisionTransformer
3
- from torch import nn
4
- from torch.utils.checkpoint import checkpoint
5
- import copy
6
-
7
- def build_2d_sincos_position_embedding(patches_resolution,
8
- embed_dims,
9
- temperature=10000.,
10
- cls_token=False):
11
- """The function is to build position embedding for model to obtain the
12
- position information of the image patches."""
13
-
14
- if isinstance(patches_resolution, int):
15
- patches_resolution = (patches_resolution, patches_resolution)
16
-
17
- h, w = patches_resolution
18
- grid_w = torch.arange(w, dtype=torch.float32)
19
- grid_h = torch.arange(h, dtype=torch.float32)
20
- grid_w, grid_h = torch.meshgrid(grid_w, grid_h)
21
- assert embed_dims % 4 == 0, \
22
- 'Embed dimension must be divisible by 4.'
23
- pos_dim = embed_dims // 4
24
-
25
- omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
26
- omega = 1. / (temperature**omega)
27
- out_w = torch.einsum('m,d->md', [grid_w.flatten(), omega])
28
- out_h = torch.einsum('m,d->md', [grid_h.flatten(), omega])
29
-
30
- pos_emb = torch.cat(
31
- [
32
- torch.sin(out_w),
33
- torch.cos(out_w),
34
- torch.sin(out_h),
35
- torch.cos(out_h)
36
- ],
37
- dim=1,
38
- )[None, :, :]
39
-
40
- if cls_token:
41
- cls_token_pe = torch.zeros([1, 1, embed_dims], dtype=torch.float32)
42
- pos_emb = torch.cat([cls_token_pe, pos_emb], dim=1)
43
-
44
- return pos_emb
45
-
46
-
47
-
48
- class MAEViT(VisionTransformer):
49
- """Vision Transformer for MAE pre-training.
50
-
51
- A PyTorch implement of: `An Image is Worth 16x16 Words: Transformers
52
- for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`_
53
-
54
- Args:
55
- arch (str | dict): Vision Transformer architecture
56
- Default: 'b'
57
- img_size (int | tuple): Input image size
58
- patch_size (int | tuple): The patch size
59
- out_indices (Sequence | int): Output from which stages.
60
- Defaults to -1, means the last stage.
61
- drop_rate (float): Probability of an element to be zeroed.
62
- Defaults to 0.
63
- drop_path_rate (float): stochastic depth rate. Defaults to 0.
64
- norm_cfg (dict): Config dict for normalization layer.
65
- Defaults to ``dict(type='LN')``.
66
- final_norm (bool): Whether to add a additional layer to normalize
67
- final feature map. Defaults to True.
68
- output_cls_token (bool): Whether output the cls_token. If set True,
69
- `with_cls_token` must be True. Defaults to True.
70
- interpolate_mode (str): Select the interpolate mode for position
71
- embeding vector resize. Defaults to "bicubic".
72
- patch_cfg (dict): Configs of patch embeding. Defaults to an empty dict.
73
- layer_cfgs (Sequence | dict): Configs of each transformer layer in
74
- encoder. Defaults to an empty dict.
75
- mask_ratio (bool): The ratio of total number of patches to be masked.
76
- Defaults to 0.75.
77
- init_cfg (dict, optional): Initialization config dict.
78
- Defaults to None.
79
- """
80
-
81
- arch_zoo = {
82
- **dict.fromkeys(
83
- ['mocov3-s', 'mocov3-small'], {
84
- 'embed_dims': 384,
85
- 'num_layers': 12,
86
- 'num_heads': 12,
87
- 'feedforward_channels': 1536,
88
- }),
89
- **dict.fromkeys(
90
- ['b', 'base'], {
91
- 'embed_dims': 768,
92
- 'num_layers': 12,
93
- 'num_heads': 12,
94
- 'feedforward_channels': 3072
95
- }),
96
- }
97
-
98
-
99
-
100
- def __init__(self,
101
- arch='b',
102
- img_size=224,
103
- patch_size=16,
104
- out_indices=-1,
105
- drop_rate=0,
106
- drop_path_rate=0,
107
- norm_cfg=dict(type='LN', eps=1e-6),
108
- final_norm=True,
109
- output_cls_token=False,
110
- interpolate_mode='bicubic',
111
- patch_cfg=dict(),
112
- layer_cfgs=dict(),
113
- gradientCKPT=False,
114
- mask_ratio=0.75,
115
- init_cfg=None):
116
- super().__init__(
117
- arch=arch,
118
- img_size=img_size,
119
- patch_size=patch_size,
120
- out_indices=out_indices,
121
- drop_rate=drop_rate,
122
- drop_path_rate=drop_path_rate,
123
- norm_cfg=norm_cfg,
124
- final_norm=final_norm,
125
- output_cls_token=output_cls_token,
126
- interpolate_mode=interpolate_mode,
127
- patch_cfg=patch_cfg,
128
- layer_cfgs=layer_cfgs,
129
- init_cfg=init_cfg)
130
- self.gradientCKPT = gradientCKPT
131
- self.pos_embed.requires_grad = False
132
- self.mask_ratio = mask_ratio
133
- self.num_patches = self.patch_resolution[0] * self.patch_resolution[1]
134
- # self.mask_embedding = copy.deepcopy(self.patch_embed)
135
- # self.mask_embedding.norm = None
136
-
137
- def init_weights(self):
138
- super(MAEViT, self).init_weights()
139
- if not (isinstance(self.init_cfg, dict)
140
- and self.init_cfg['type'] == 'Pretrained'):
141
- # initialize position embedding in backbone
142
- pos_embed = build_2d_sincos_position_embedding(
143
- self.patch_resolution,
144
- self.pos_embed.shape[-1],
145
- cls_token=True)
146
- self.pos_embed.data.copy_(pos_embed.float())
147
-
148
- w = self.patch_embed.projection.weight.data
149
- torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
150
-
151
- torch.nn.init.normal_(self.cls_token, std=.02)
152
-
153
- self.apply(self._init_weights)
154
-
155
- # mask_embedding transfers pixel level mask to token level
156
- # self.mask_embedding.apply(self._init_mask_embedding)
157
- # for para in self.mask_embedding.parameters():
158
- # para.requires_grad = False
159
-
160
- def _init_mask_embedding(self,m):
161
- if hasattr(m,'weight'):
162
- nn.init.constant_(m.weight,1.0)
163
- if hasattr(m, 'bias'):
164
- nn.init.constant_(m.bias,0)
165
-
166
- def _init_weights(self, m):
167
-
168
- if isinstance(m, nn.Linear):
169
- torch.nn.init.xavier_uniform_(m.weight)
170
- if isinstance(m, nn.Linear) and m.bias is not None:
171
- nn.init.constant_(m.bias, 0)
172
- elif isinstance(m, nn.LayerNorm):
173
- nn.init.constant_(m.bias, 0)
174
- nn.init.constant_(m.weight, 1.0)
175
-
176
- def random_masking(self, x, mask_ratio=0.75, attn_mask=None):
177
- """Generate the mask for MAE Pre-training.
178
-
179
- Args:
180
- x (torch.tensor): Image with data augmentation applied.
181
- mask_ratio (float): The mask ratio of total patches.
182
- Defaults to 0.75.
183
-
184
- Returns:
185
- tuple[Tensor, Tensor, Tensor]: masked image, mask and the ids
186
- to restore original image.
187
-
188
- - x_masked (Tensor): masked image.
189
- - mask (Tensor): mask used to mask image.
190
- - ids_restore (Tensor): ids to restore original image.
191
- """
192
- N, L, D = x.shape # batch, length, dim
193
- len_keep = int(L * (1 - mask_ratio))
194
-
195
- noise = torch.rand(N, L, device=x.device) # noise in [0, 1]
196
-
197
- # sort noise for each sample
198
- ids_shuffle = torch.argsort(
199
- noise, dim=1) # ascend: small is keep, large is remove
200
- ids_restore = torch.argsort(ids_shuffle, dim=1)
201
-
202
- # keep the first subset
203
- ids_keep = ids_shuffle[:, :len_keep]
204
- x_masked = torch.gather(
205
- x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
206
- # modified_attn_mask = None if attn_mask is None else torch.gather(attn_mask,dim=1, index=ids_keep)
207
-
208
- # generate the binary mask: 0 is keep, 1 is remove
209
- mask = torch.ones([N, L], device=x.device)
210
- mask[:, :len_keep] = 0
211
- # unshuffle to get the binary mask
212
- mask = torch.gather(mask, dim=1, index=ids_restore)
213
-
214
- return x_masked, mask, ids_restore #, modified_attn_mask
215
-
216
- def generate_mask(self, pixel_level_attn_mask):
217
- '''
218
- pixel_level_attn_mask: (0,1) attn mask with the same shape as img
219
- '''
220
- if pixel_level_attn_mask is None: return None
221
- # H, W = patch_resolution
222
- # B, C = pixel_level_attn_mask.shape[:2]
223
- # attn_mask = torch.ones((B,C,H,W),device=pixel_level_attn_mask)
224
- # H_splited = torch.chunk(pixel_level_attn_mask, H, -2)
225
- # HW_splited_mask = (torch.chunk(Hs, W, -1) for Hs in H_splited)
226
-
227
- # if HW_splited_mask[:,:,hi,wi].sum().item() == 0:
228
- # attn_mask[:,:,hi,wi] = 0
229
-
230
- # mask_patches = self.mask_embedding(pixel_level_attn_mask)[0]
231
- # attn_mask = mask_patches.sum(-1) != 0
232
-
233
- # return attn_mask
234
-
235
- def extract_feat(self, img ,attn_mask=None):
236
- x, *_ = self.forward(img,attn_mask)
237
- if self.output_cls_token:
238
- return x[:,0,:]
239
- else:
240
- return torch.mean(x,dim=1)
241
-
242
- def forward(self, x, attn_mask=None):
243
- if attn_mask is not None: assert self.output_cls_token
244
-
245
- B = x.shape[0]
246
- x = self.patch_embed(x)[0]
247
- # add pos embed w/o cls token
248
- x = x + self.pos_embed[:, 1:1+x.shape[1], :]
249
- # masking: length -> length * mask_ratio
250
- if True:
251
- assert self.mask_ratio == 0.
252
- else:
253
- x, mask, ids_restore = self.random_masking(x, self.mask_ratio)
254
-
255
- # append cls token
256
- cls_token = self.cls_token + self.pos_embed[:, :1, :]
257
- cls_tokens = cls_token.expand(B, -1, -1)
258
- x = torch.cat((cls_tokens, x), dim=1)
259
- x = self.drop_after_pos(x)
260
- # if attn_mask is not None:
261
- # attn_mask = torch.concat((torch.ones((B,1),device=attn_mask.device) , attn_mask),dim=1)
262
-
263
- for i, layer in enumerate(self.layers):
264
- if self.gradientCKPT:
265
- x = checkpoint(layer,x) # ,attn_mask
266
- else:
267
- x = layer(x) # ,attn_mask
268
- if i == len(self.layers) - 1 and self.final_norm:
269
- x = self.norm1(x)
270
- if True:
271
- return x
272
- else:
273
- return (x, mask, ids_restore)
274
-
275
- def forward_generator(self, x, attn_mask=None):
276
- if attn_mask is not None: assert self.output_cls_token
277
-
278
- B = x.shape[0]
279
- x = self.patch_embed(x)[0]
280
- # add pos embed w/o cls token
281
- x = x + self.pos_embed[:, 1:1+x.shape[1], :]
282
-
283
- # append cls token
284
- cls_token = self.cls_token + self.pos_embed[:, :1, :]
285
- cls_tokens = cls_token.expand(B, -1, -1)
286
- x = torch.cat((cls_tokens, x), dim=1)
287
- x = self.drop_after_pos(x)
288
-
289
- for i, layer in enumerate(self.layers):
290
- if self.gradientCKPT:
291
- x = checkpoint(layer,x) # ,attn_mask
292
- else:
293
- x = layer(x) # ,attn_mask
294
-
295
- if i == len(self.layers) - 1 and self.final_norm:
296
- x = self.norm1(x)
297
-
298
- x = x if (new_x:=(yield x)) is None else new_x
299
-
300
- debug = False
301
- if debug:
302
- print(f'layer {i}-th forwarded')
303
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/resampler.py DELETED
@@ -1,115 +0,0 @@
1
- # This file may have been modified by Bytedance Ltd. and/or its affiliates (“Bytedance's Modifications”).
2
- # All Bytedance's Modifications are Copyright (year) Bytedance Ltd. and/or its affiliates.
3
-
4
- import torch
5
- from torch import nn, einsum
6
- from einops import rearrange, repeat
7
- from einops_exts import rearrange_many, repeat_many
8
-
9
-
10
- def FeedForward(dim, mult=4):
11
- inner_dim = int(dim * mult)
12
- return nn.Sequential(
13
- nn.LayerNorm(dim),
14
- nn.Linear(dim, inner_dim, bias=False),
15
- nn.GELU(),
16
- nn.Linear(inner_dim, dim, bias=False)
17
- )
18
-
19
-
20
- class PerceiverAttention(nn.Module):
21
- def __init__(
22
- self,
23
- vision_width,
24
- text_width,
25
- dim_head=64,
26
- heads=8
27
- ):
28
- super().__init__()
29
-
30
- self.vision_width = vision_width
31
- self.text_width = text_width
32
-
33
- self.scale = dim_head ** -0.5
34
- self.heads = heads
35
- inner_dim = dim_head * heads
36
-
37
- self.norm_media = nn.LayerNorm(vision_width)
38
- self.norm_latents = nn.LayerNorm(text_width)
39
-
40
- self.to_q = nn.Linear(text_width, inner_dim, bias=False)
41
- self.to_kv = nn.Linear(vision_width, inner_dim * 2, bias=False)
42
- self.to_out = nn.Linear(inner_dim, text_width, bias=False)
43
-
44
- def forward(self, x, latents):
45
- """
46
- einstein notation
47
- b - batch
48
- t - time
49
- n - sequence
50
- d - dimension
51
- """
52
- x = self.norm_media(x)
53
- latents = self.norm_latents(latents)
54
-
55
- b, m, h = *x.shape[:2], self.heads
56
-
57
- q = self.to_q(latents)
58
-
59
- kv_input = x
60
- k, v = self.to_kv(kv_input).chunk(2, dim=-1)
61
-
62
- q, k, v = rearrange_many((q, k, v), 'b t n (h d) -> b h t n d', h=h)
63
-
64
- q = q * self.scale
65
-
66
- # attention
67
- sim = einsum('... i d, ... j d -> ... i j', q, k)
68
-
69
- sim = sim - sim.amax(dim=-1, keepdim=True).detach()
70
- attn = sim.softmax(dim=-1)
71
-
72
- out = einsum('... i j, ... j d -> ... i d', attn, v)
73
- out = rearrange(out, 'b h t n d -> b t n (h d)', h=h)
74
- return self.to_out(out)
75
-
76
-
77
- class PerceiverResampler(nn.Module):
78
- def __init__(
79
- self,
80
- vision_width,
81
- text_width,
82
- depth,
83
- dim_head=64,
84
- heads=8,
85
- num_latents=64,
86
- ff_mult=4,
87
- ):
88
- super().__init__()
89
- self.latents = nn.Parameter(torch.randn(num_latents, text_width))
90
-
91
- self.layers = nn.ModuleList([])
92
- for _ in range(depth):
93
- self.layers.append(nn.ModuleList([
94
- PerceiverAttention(vision_width=vision_width, text_width=text_width, dim_head=dim_head, heads=heads),
95
- FeedForward(dim=text_width, mult=ff_mult)
96
- ]))
97
-
98
- self.norm = nn.LayerNorm(text_width)
99
-
100
- def forward(self, vision_embeds=None, vision_atts=None):
101
- x = vision_embeds
102
-
103
- if x.ndim == 3:
104
- x = rearrange(x, 'b n d -> b 1 n d')
105
-
106
- latents = repeat(self.latents, 'n d -> b m n d', b=x.shape[0], m=x.shape[1])
107
-
108
- for attn, ff in self.layers:
109
- latents = attn(x, latents) + latents
110
- latents = ff(latents) + latents
111
-
112
- v2t_feats = self.norm(latents).squeeze(dim=1) # for image, squeeze dim=1
113
- v2t_atts = torch.ones(v2t_feats.shape[:2], dtype=torch.long, device=v2t_feats.device)
114
-
115
- return v2t_feats, v2t_atts
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/spectprompt.py DELETED
@@ -1,577 +0,0 @@
1
- import json
2
- import os
3
- import pdb
4
- from mmcv.cnn.bricks import padding
5
- import torch
6
- from torch import nn, einsum
7
- from typing import Optional, Dict, Tuple
8
- from src.mae_vit import MAEViT
9
- from src.htsat import HTSAT_Swin_Transformer, create_htsat_model
10
- from src.LMdecoder import LMDecoder, LMDecoder_qlora
11
- from src.vision_transformer import VisionTransformer
12
- from einops import rearrange, repeat
13
- from einops_exts import rearrange_many
14
- import inspect
15
-
16
- class ArgsHandler:
17
- def __init__(self, module, funcname, fargs, fkargs):
18
- self.fargs = list(fargs)
19
- self.fkargs = fkargs
20
- func = getattr(module, funcname)
21
- fal_repr = f"{funcname}_argnames_list"
22
- if (argns_list:=getattr(module, fal_repr, None)) is None:
23
- self.func_sig = inspect.signature(func)
24
- self.argnames_list = list(self.func_sig.parameters.keys())
25
- setattr(module, fal_repr, self.argnames_list)
26
- else:
27
- self.argnames_list = argns_list
28
-
29
- def get_arg(self, arg_name):
30
- if arg_name in self.fkargs:
31
- arg = self.fkargs[arg_name]
32
- else:
33
- arg = self.fargs[self.argnames_list.index(arg_name)]
34
- return arg
35
-
36
- def set_arg(self, arg_name, arg_value):
37
- if arg_name in self.fkargs:
38
- self.fkargs[arg_name] = arg_value
39
- else:
40
- self.fargs[self.argnames_list.index(arg_name)] = arg_value
41
-
42
- def return_all_args(self,):
43
- return tuple(self.fargs), self.fkargs
44
-
45
- class SquaredReLU(nn.Module):
46
- """ squared ReLU activation function"""
47
- def __init__(self):
48
- super().__init__()
49
-
50
- def forward(self, x):
51
- return torch.pow(torch.relu(x), 2)
52
-
53
- def FeedForward(dim, out_dim, mult=4, act='gelu'):
54
- """
55
- lucidrains implementation, slightly modified with the act parameter.
56
- """
57
-
58
- acts = dict(
59
- gelu=nn.GELU,
60
- sqrelu=SquaredReLU,
61
- relu=nn.ReLU
62
- )
63
-
64
- assert act in acts, f"act. can only be one of {acts.keys()}"
65
-
66
- inner_dim = int(dim * mult)
67
- return nn.Sequential(
68
- nn.LayerNorm(dim),
69
- nn.Linear(dim, inner_dim, bias=False),
70
- acts[act](),
71
- nn.Linear(inner_dim, out_dim, bias=False)
72
- )
73
-
74
-
75
- class PerceiverAttentionLayer(nn.Module):
76
- def __init__(
77
- self,
78
- *,
79
- feat_dim,
80
- latent_dim,
81
- dim_head=64,
82
- heads=8
83
- ):
84
- super().__init__()
85
- self.scale = dim_head ** -0.5
86
- self.heads = heads
87
- self.dim_head = dim_head
88
-
89
- inner_dim = dim_head * heads
90
-
91
- # trainable components of PerceiverAttentionLayer
92
- self.norm_media = nn.LayerNorm(feat_dim)
93
- self.norm_latents = nn.LayerNorm(latent_dim)
94
-
95
- self.to_q = nn.Linear(latent_dim, inner_dim, bias=False)
96
- self.to_k = nn.Linear(feat_dim, inner_dim, bias=False)
97
- self.to_v = nn.Linear(feat_dim, inner_dim, bias=False)
98
- self.to_out = nn.Linear(inner_dim, latent_dim, bias=False)
99
-
100
- def forward(self, features, latents):
101
- """
102
- Latent vectors are cross-attending to the visual features x.
103
- :param x: Tensor (n_batch, n_features, dim)
104
- visual features
105
- :param latents: Tensor (n_batch, n_latents, dim)
106
- latent learnt vectors from which the queries are computed.
107
- Actually the same, just replicated in n_batch and n_frames dimension.
108
- :return: Tensor (n_batch, n_latents, dim)
109
- """
110
- assert features.ndim == 3
111
- assert latents.ndim == 3
112
- assert features.shape[0] == latents.shape[0]
113
- #assert features.shape[2] == latents.shape[2]
114
-
115
- n_heads = self.heads
116
- n_batch, n_features, dim = features.shape
117
- n_queries = latents.shape[1]
118
-
119
- # layer normalization, as usual
120
- x = self.norm_media(features)
121
- latents = self.norm_latents(latents)
122
-
123
- # queries
124
- # compute the queries from the latents, for all attention heads simultaneously.
125
- q = self.to_q(latents)
126
- q = rearrange(q, 'b q (h d) -> b h q d', h=n_heads)
127
- assert q.shape == torch.Size([n_batch, n_heads, n_queries, self.dim_head])
128
-
129
- # keys and values for all attention heads
130
-
131
- '''
132
- kv_input = torch.cat((x, latents), dim=-2)
133
- n_features_latents = n_features + n_queries
134
- '''
135
-
136
- kv_input = x
137
- n_features_latents = n_features
138
-
139
- # keys, values
140
- k = self.to_k(kv_input)
141
- v = self.to_v(kv_input)
142
- # batch, features, (heads, dim)
143
-
144
- # split so we have an extra dimension for the heads
145
- # q, k, v = rearrange_many((q, k, v), 'b t n (h d) -> b h t n d', h=h)
146
- k, v = rearrange_many((k, v), 'b f (h d) -> b h f d', h=n_heads)
147
- assert v.shape == torch.Size([n_batch, n_heads, n_features_latents, self.dim_head])
148
-
149
- # scale queries?
150
- q = q * self.scale
151
-
152
- # attention
153
-
154
- # attention scores
155
- # sim = einsum('... i d, ... j d -> ... i j', q, k)
156
- sim = einsum('b h q d, b h f d -> b h q f', q, k)
157
-
158
- # Is this for numerical stability? Does not affect the result of the softmax operation
159
- sim = sim - sim.amax(dim=-1, keepdim=True).detach()
160
- alphas = sim.softmax(dim=-1)
161
-
162
- # out = einsum('... i j, ... j d -> ... i d', alphas, v)
163
- out = einsum('b h q f, b h f v -> b h q v', alphas, v)
164
-
165
- # out = rearrange(out, 'b h t n d -> b t n (h d)', h=h)
166
- out = rearrange(out, 'b h q v -> b q (h v)')
167
- return self.to_out(out)
168
-
169
-
170
- class SpectPrompt(nn.Module):
171
- """
172
-
173
- Args:
174
- backbone (dict): Config dict for encoder. Defaults to None.
175
- neck (dict): Config dict for encoder. Defaults to None.
176
- head (dict): Config dict for loss functions. Defaults to None.
177
- init_cfg (dict, optional): Config dict for weight initialization.
178
- Defaults to None.
179
- """
180
-
181
- def __init__(self,
182
- backbone: dict,
183
- neck: dict,
184
- live_long_learning:bool=False, # TODO: costumize para or module
185
- ) -> None:
186
- super().__init__()
187
- assert backbone is not None
188
- bk_name = backbone.pop('name')
189
- self.bk_name = bk_name
190
- if bk_name == 'MAEViT':
191
- ckpt_path = backbone.pop('ckpt') if 'ckpt' in backbone else None
192
- self.backbone = MAEViT(**backbone)
193
- if ckpt_path is not None:
194
- ckpt = torch.load( ckpt_path,'cpu')
195
- self.backbone.load_state_dict(ckpt['state_dict'])
196
-
197
- elif bk_name == 'HTSAT':
198
- ckpt_path = backbone.pop('ckpt') if 'ckpt' in backbone else None
199
- self.backbone = create_htsat_model(backbone)
200
- if ckpt_path is not None:
201
- ckpt = torch.load( ckpt_path,'cpu')
202
- self.backbone.load_state_dict(ckpt['state_dict'])
203
- elif bk_name == 'qformer':
204
- raise NotImplemented
205
- else:
206
- raise NotImplemented
207
-
208
-
209
-
210
- # neck["num_patches"] = self.backbone.num_patches
211
- # neck["patch_resolution"] = self.backbone.patch_resolution
212
- assert neck is not None
213
- nk_name = neck.pop('name')
214
- if nk_name == 'LMDecoder':
215
- self.neck = LMDecoder(**neck)
216
- elif nk_name == 'LMDecoder_qlora':
217
- self.neck = LMDecoder_qlora(**neck)
218
- else:
219
- raise NotImplemented
220
- self.config = self.neck.LMconfig # TODO
221
-
222
- '''
223
- self.ae_proj = nn.Linear(
224
- 768, self.config.hidden_size
225
- )
226
- '''
227
-
228
- ## TODO
229
-
230
- #self.neck.lm.apply(lambda m:m.gradient_checkpointing=True)
231
- self.neck.lm.model.gradient_checkpointing = False
232
-
233
- self.register_buffer('ones', torch.ones((1,4096), dtype=torch.long), persistent=False)
234
- self.graft_adapter()
235
- self.init_weights()
236
-
237
- if False:
238
- self.patch_llm()
239
- self.first_run = True
240
-
241
- def graft_adapter(self):
242
- adapter_latent_len = 32
243
- self.adapter_latent_len = adapter_latent_len
244
- self.adapter_latent = nn.Parameter(torch.rand((1,adapter_latent_len, self.config.hidden_size), \
245
- dtype=torch.float))
246
- resampler_latent_len = 32
247
- self.resampler_latent_len = resampler_latent_len
248
- self.resampler_latent = nn.Parameter(torch.rand((1,resampler_latent_len, self.config.hidden_size), \
249
- dtype=torch.float))
250
- ## TODO
251
- # self.adapter.pre_bn = torch.nn.BatchNorm1d(4096, affine=True)
252
-
253
- self.adapter = nn.ModuleList([])
254
-
255
- ff_mult = 4
256
- heads=8
257
- dim_head=512
258
- act='gelu'
259
-
260
- lm_dim = self.config.hidden_size
261
- if self.bk_name == 'HTSAT':
262
- feat_dim = 1024
263
- depth = len(self.backbone.layers[2].blocks)
264
- else:
265
- feat_dim = 768
266
- depth = int(len(self.neck.lm.model.layers)/2) # 16
267
- for idx in range(depth):
268
- self.adapter.append(nn.ModuleList([
269
- Adapter(input_size=self.config.hidden_size),
270
- # PerceiverAttentionLayer(feat_dim=feat_dim, latent_dim=lm_dim, dim_head=dim_head, heads=heads),
271
- # FeedForward(dim=lm_dim, out_dim=lm_dim, mult=1, act=act),
272
- #FeedForward(dim=self.dim, out_dim=768, mult=ff_mult, act=act) if idx != depth-1 else nn.Identity()
273
- ]))
274
-
275
- self.samplers = nn.ModuleList([]) # add
276
- for _ in range(3):
277
- self.samplers.append(nn.ModuleList([
278
- PerceiverAttentionLayer(feat_dim=feat_dim, latent_dim=lm_dim, dim_head=64, heads=heads),
279
- FeedForward(dim=lm_dim, out_dim=lm_dim, mult=4),
280
- ]))
281
- self.norm = nn.LayerNorm(lm_dim)
282
-
283
- # self.agate_list = nn.ParameterList([])
284
- # for i in range(len(self.neck.lm.model.layers)):
285
- # self.agate_list.append(nn.Parameter(torch.zeros(lm_dim)))
286
-
287
-
288
-
289
- def init_weights(self):
290
- try:
291
- super().init_weights()
292
- except:
293
- pass
294
- # import traceback
295
- # traceback.print_exc()
296
- if getattr(self, 'adapter_latent', None) is not None:
297
- self.adapter_latent.data.normal_(mean=0.0, std=0.02)
298
- if getattr(self, 'resampler_latent', None) is not None:
299
- self.adapter_latent.data.normal_(mean=0.0, std=0.02)
300
-
301
- def forward_resampler(self, x):
302
- # b, 768, 512
303
- latents = repeat(self.resampler_latent, 'b n d -> (bs b) n d', bs=x.shape[0])
304
- for attn, ff in self.samplers:
305
- latents = attn(x, latents) + latents
306
- latents = ff(latents) + latents
307
- v2t_feats = self.norm(latents) #
308
- # v2t_atts = torch.ones(v2t_feats.shape[:2], dtype=torch.long, device=v2t_feats.device)
309
- return v2t_feats # bs, 32, dim_llm
310
-
311
-
312
- def hook_adapter(self, audio_embedding, lm, v2t_feats):
313
-
314
- class PHooker:
315
- # model = self.backbone
316
- # mgtr = self.backbone.forward_generator(spectrogram)
317
- adapter = self.adapter
318
- y = v2t_feats
319
- handles_list = list()
320
- cnter = 0
321
- def layer_prehook(self, m, margs, mkargs):
322
- ahl = ArgsHandler(m, 'forward', margs, mkargs)
323
-
324
- # print(self.cnter)
325
-
326
- # if self.cnter>=16:
327
- # self.cnter+=1
328
- # return None
329
- adapt = self.adapter[self.cnter][0]
330
-
331
- hs = ahl.get_arg("hidden_states")
332
- adapter_residual = hs
333
- neo_hs = adapt(hs, adapter_residual)
334
-
335
- self.cnter+=1
336
- ahl.set_arg("hidden_states", neo_hs)
337
- return ahl.return_all_args()
338
- def first_layer_prehook(self, m, margs, mkargs):
339
- ahl = ArgsHandler(m, 'forward', margs, mkargs)
340
- neo_lm_latents = self.y # torch.Size([128, 32, 4096])
341
- hs = ahl.get_arg("hidden_states") # torch.Size([128, 87, 4096])
342
- hs_msk = self.lm_ahl.get_arg("input_ids") < 0 # torch.Size([128, 87]) [False,, True*32, False,,]
343
- # __import__('pdb').set_trace()
344
- neo_hs = hs.masked_scatter(hs_msk.unsqueeze(-1), neo_lm_latents) # resampler hooker直接替换
345
- ahl.set_arg("hidden_states", neo_hs)
346
- return ahl.return_all_args()
347
-
348
- def lm_prehook(self, m, margs, mkargs):
349
- self.lm_ahl = ArgsHandler(m, 'forward', margs, mkargs)
350
- return None
351
- def last_layer_hook(self, m, margs, mkargs):
352
- # __import__('pdb').set_trace()
353
- self.cnter = 0
354
-
355
- if getattr(lm,'phooker',False):
356
- for _ in lm.phooker.handles_list:
357
- _.remove()
358
- del lm.phooker
359
- lm.phooker = None
360
- phooker = PHooker()
361
- phooker.handles_list.append(lm.register_forward_pre_hook(phooker.lm_prehook, with_kwargs=True))
362
- # 第一层插入
363
- phooker.handles_list.append(lm.model.layers[0].register_forward_pre_hook(phooker.first_layer_prehook, with_kwargs=True))
364
-
365
- for ii in range(1,len(lm.model.layers),2):
366
- l = lm.model.layers[ii]
367
- handle = l.register_forward_pre_hook(phooker.layer_prehook, with_kwargs=True)
368
- phooker.handles_list.append(handle)
369
- phooker.handles_list.append(lm.model.layers[-1].register_forward_pre_hook(phooker.last_layer_hook, with_kwargs=True))
370
- lm.phooker = phooker
371
- return None
372
-
373
-
374
-
375
- def prepare_ids(self, batch, audio_ids):
376
- toker = self.neck.tokenizer
377
- # for idx, l in enumerate(self.neck.lm.model.layers):
378
- # l.agate = self.agate_list[idx].clone() ## should clone the parameter
379
-
380
- with torch.no_grad():
381
-
382
- input_ids = batch['input_ids']
383
- att_msk = batch['attention_mask']
384
- au_crds = batch['audio_crds']
385
- ans_crds = batch['ans_crds']
386
- bsz = input_ids.shape[0]
387
- # __import__('pdb').set_trace()
388
- ## TODO
389
- merged_ids, merged_msk, label_ids = list(), list(), list()
390
- for i in range(bsz):
391
- # cur_merged_ids = torch.cat([input_ids[i,:au_crds[i]], -1 * audio_ids[i] -1, input_ids[i,au_crds[i]:]])
392
- cur_merged_ids = torch.cat([ -1 * audio_ids[i] -1, input_ids[i,au_crds[i]:]])
393
-
394
- # cur_au_msk = self.ones[:,:audio_ids.shape[1]][0].clone().type_as(att_msk).detach()
395
- cur_au_msk = torch.ones(audio_ids.shape[1], device=audio_ids.device)
396
- # cur_merged_msk = torch.cat([att_msk[i,:au_crds[i]], cur_au_msk, att_msk[i,au_crds[i]:]])
397
- cur_merged_msk = torch.cat([ cur_au_msk, att_msk[i,au_crds[i]:]])
398
- cur_label_ids = cur_merged_ids.clone().detach()
399
- cur_label_ids[:audio_ids.shape[1]+ans_crds[i]] = -100
400
-
401
- merged_ids.append(cur_merged_ids)
402
- merged_msk.append(cur_merged_msk)
403
- label_ids.append(cur_label_ids)
404
-
405
- merged_ids = torch.stack(merged_ids, dim=0)
406
- merged_msk = torch.stack(merged_msk, dim=0)
407
- label_ids = torch.stack(label_ids, dim=0)
408
-
409
- assert merged_ids.shape[0] == bsz
410
- assert merged_ids.shape == merged_msk.shape
411
-
412
- label_msk = merged_msk.clone()
413
- assert label_msk.shape == merged_msk.shape
414
- assert merged_msk[:,-1].max() == 1
415
-
416
- for i in range(len(ans_crds)):
417
- label_ids[i,:audio_ids.shape[1]+ans_crds[i]].fill_(-100)
418
-
419
-
420
- merged_labels = label_ids
421
- merged_ids[merged_ids.eq(-100)] = toker.pad_token_id
422
-
423
- return merged_ids, merged_msk, merged_labels
424
-
425
- def forward(self, batch, **kwargs):
426
- """Forward computation during training.
427
-
428
- Args:
429
- img (torch.Tensor): Input images of shape (N, C, H, W).
430
- kwargs: Any keyword arguments to be used to forward.
431
- Returns:
432
- Dict[str, torch.Tensor]: A dictionary of loss components.
433
- """
434
-
435
- bsz = len(batch['input_ids'])
436
- device = batch['input_ids'].device
437
- float_type = next(self.parameters()).dtype
438
- spectrogram = batch['spectrogram'].type(float_type)
439
- audio_embedding = self.backbone(spectrogram).detach() # b, 768, 512
440
- resampler_feats = self.forward_resampler(audio_embedding)
441
- self.hook_adapter(audio_embedding, self.neck.lm, resampler_feats) # add hook
442
-
443
- # self.hook_resapmler(resampler_feats, self.neck.lm)
444
-
445
- audio_ids = torch.arange(self.adapter_latent.shape[1]).unsqueeze(0).repeat((bsz, 1)).long().to(device)
446
- assert audio_ids.max() < 100
447
- merged_ids, merged_msk, merged_labels = self.prepare_ids(batch, audio_ids)
448
-
449
- try:
450
- assert merged_ids.shape == merged_labels.shape
451
- outs = self.neck(input_ids=merged_ids.contiguous().long(),
452
- flatten_embs=self.adapter_latent.flatten(0,1), # 32, 4096
453
- # flatten_embs = resampler_feats.flatten(0,1), # b, 32, 4096
454
- attention_mask=merged_msk.contiguous().long(),
455
- labels=merged_labels.contiguous().long(), use_cache=False)
456
- except Exception as e:
457
- import traceback
458
- traceback.print_exc()
459
- __import__('remote_pdb').set_trace()
460
- #outs.hidden_logits = self.hidden_logits
461
-
462
- ## TODO
463
- if eval(os.environ.get("doing_eval", 'False')):
464
- outs.merged_ids = merged_ids.cpu()
465
- outs.merged_labels = merged_labels.cpu()
466
-
467
- return outs
468
-
469
-
470
- def forward_test(self, batch, **kwargs):
471
- """Forward computation during training.
472
-
473
- Args:
474
- img (torch.Tensor): Input images of shape (N, C, H, W).
475
- kwargs: Any keyword arguments to be used to forward.
476
- Returns:
477
- Dict[str, torch.Tensor]: A dictionary of loss components.
478
- """
479
-
480
- assert self.training == False
481
-
482
- bsz = len(batch['input_ids'])
483
- device = batch['input_ids'].device
484
- float_type = next(self.parameters()).dtype
485
- spectrogram = batch['spectrogram'].type(float_type)
486
- audio_embedding = self.backbone(spectrogram).detach() # b, 768, 512
487
- resampler_feats = self.forward_resampler(audio_embedding)
488
- self.hook_adapter(audio_embedding, self.neck.lm, resampler_feats) # add hook
489
- # self.extract_features(batch, self.neck.lm)
490
- audio_ids = torch.arange(self.adapter_latent.shape[1]).unsqueeze(0).repeat((bsz, 1)).long().to(device)
491
- assert audio_ids.max() < 100
492
-
493
- merged_ids, merged_msk, merged_labels = self.prepare_ids(batch, audio_ids)
494
- au_crds = batch['audio_crds']
495
- ans_crds = batch['ans_crds']
496
-
497
- aid_len = audio_ids.shape[-1]
498
-
499
-
500
- toker = self.neck.tokenizer
501
- with torch.no_grad():
502
-
503
- ## TODO
504
- pad_token = toker.encode(self.neck.tokenizer.eos_token)[0]
505
- padded_merged_ids = self.ones[:, :aid_len+max(ans_crds)].repeat(bsz, 1).clone().detach() * pad_token
506
- for i in range(bsz):
507
- # for i in range(1):
508
- assert au_crds[i] <= ans_crds[i]
509
- cur_ids = merged_ids[i][:aid_len+ans_crds[i]]
510
- padded_merged_ids[i][max(ans_crds)-ans_crds[i]:] = cur_ids
511
- # __import__('pdb').set_trace()
512
- outs = self.neck.generate(padded_merged_ids, self.adapter_latent.flatten(0,1))
513
- #outs.hidden_logits = self.hidden_logits
514
-
515
- return outs
516
-
517
-
518
-
519
- import torch
520
- from torch import nn
521
-
522
- from transformers.activations import ACT2FN
523
-
524
- class Adapter(nn.Module):
525
- """
526
- Implementation of a sequential bottleneck adapter block.
527
- """
528
- def __init__(
529
- self,
530
- input_size,
531
- down_sample=None,
532
- ):
533
- super().__init__()
534
-
535
- self.input_size = input_size
536
-
537
- # if a downsample size is not passed, we just half the size of the original input
538
- self.down_sample = down_sample
539
- if down_sample is None:
540
- self.down_sample = self.input_size // 2
541
-
542
- self.adapter_norm_before = nn.LayerNorm(self.input_size)
543
- self.adapter_down = nn.Linear(self.input_size, self.down_sample)
544
- self.non_linearity = ACT2FN["silu"]
545
-
546
- # Up projection to input size
547
- self.adapter_up = nn.Linear(self.down_sample, self.input_size)
548
-
549
- # Additional scaling factor (from He et al. (2021))
550
- self.scaling = nn.Parameter(torch.ones(1))
551
-
552
- self.adapter_down.apply(self._init_weights)
553
- self.adapter_up.apply(self._init_weights)
554
-
555
- def forward(self, x, residual_input): # , residual_input=None):
556
-
557
- down = self.non_linearity(self.adapter_down(self.adapter_norm_before(x)))
558
-
559
- up = self.adapter_up(down)
560
- up = up * self.scaling
561
- output = up
562
-
563
- output = output + residual_input
564
-
565
- return output
566
-
567
- @staticmethod
568
- def _init_weights(module):
569
- """Initialize the weights."""
570
- if isinstance(module, (nn.Linear, nn.Embedding)):
571
- # std defaults to 0.02, this might need to be changed
572
- module.weight.data.normal_(mean=0.0, std=0.02)
573
- elif isinstance(module, nn.LayerNorm):
574
- module.bias.data.zero_()
575
- module.weight.data.fill_(1.0)
576
- if isinstance(module, nn.Linear) and module.bias is not None:
577
- module.bias.data.zero_()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/stft.py DELETED
@@ -1,1111 +0,0 @@
1
- import math
2
- import argparse
3
-
4
- import librosa
5
- import numpy as np
6
-
7
- import torch
8
- import torch.nn as nn
9
- import torch.nn.functional as F
10
- from torch.nn.parameter import Parameter
11
-
12
-
13
- class DFTBase(nn.Module):
14
- def __init__(self):
15
- r"""Base class for DFT and IDFT matrix.
16
- """
17
- super(DFTBase, self).__init__()
18
-
19
- def dft_matrix(self, n):
20
- (x, y) = np.meshgrid(np.arange(n), np.arange(n))
21
- omega = np.exp(-2 * np.pi * 1j / n)
22
- W = np.power(omega, x * y) # shape: (n, n)
23
- return W
24
-
25
- def idft_matrix(self, n):
26
- (x, y) = np.meshgrid(np.arange(n), np.arange(n))
27
- omega = np.exp(2 * np.pi * 1j / n)
28
- W = np.power(omega, x * y) # shape: (n, n)
29
- return W
30
-
31
-
32
- class DFT(DFTBase):
33
- def __init__(self, n, norm):
34
- r"""Calculate discrete Fourier transform (DFT), inverse DFT (IDFT,
35
- right DFT (RDFT) RDFT, and inverse RDFT (IRDFT.)
36
-
37
- Args:
38
- n: fft window size
39
- norm: None | 'ortho'
40
- """
41
- super(DFT, self).__init__()
42
-
43
- self.W = self.dft_matrix(n)
44
- self.inv_W = self.idft_matrix(n)
45
-
46
- self.W_real = torch.Tensor(np.real(self.W))
47
- self.W_imag = torch.Tensor(np.imag(self.W))
48
- self.inv_W_real = torch.Tensor(np.real(self.inv_W))
49
- self.inv_W_imag = torch.Tensor(np.imag(self.inv_W))
50
-
51
- self.n = n
52
- self.norm = norm
53
-
54
- def dft(self, x_real, x_imag):
55
- r"""Calculate DFT of a signal.
56
-
57
- Args:
58
- x_real: (n,), real part of a signal
59
- x_imag: (n,), imag part of a signal
60
-
61
- Returns:
62
- z_real: (n,), real part of output
63
- z_imag: (n,), imag part of output
64
- """
65
- z_real = torch.matmul(x_real, self.W_real) - torch.matmul(x_imag, self.W_imag)
66
- z_imag = torch.matmul(x_imag, self.W_real) + torch.matmul(x_real, self.W_imag)
67
- # shape: (n,)
68
-
69
- if self.norm is None:
70
- pass
71
- elif self.norm == 'ortho':
72
- z_real /= math.sqrt(self.n)
73
- z_imag /= math.sqrt(self.n)
74
-
75
- return z_real, z_imag
76
-
77
- def idft(self, x_real, x_imag):
78
- r"""Calculate IDFT of a signal.
79
-
80
- Args:
81
- x_real: (n,), real part of a signal
82
- x_imag: (n,), imag part of a signal
83
- Returns:
84
- z_real: (n,), real part of output
85
- z_imag: (n,), imag part of output
86
- """
87
- z_real = torch.matmul(x_real, self.inv_W_real) - torch.matmul(x_imag, self.inv_W_imag)
88
- z_imag = torch.matmul(x_imag, self.inv_W_real) + torch.matmul(x_real, self.inv_W_imag)
89
- # shape: (n,)
90
-
91
- if self.norm is None:
92
- z_real /= self.n
93
- elif self.norm == 'ortho':
94
- z_real /= math.sqrt(n)
95
- z_imag /= math.sqrt(n)
96
-
97
- return z_real, z_imag
98
-
99
- def rdft(self, x_real):
100
- r"""Calculate right RDFT of signal.
101
-
102
- Args:
103
- x_real: (n,), real part of a signal
104
- x_imag: (n,), imag part of a signal
105
-
106
- Returns:
107
- z_real: (n // 2 + 1,), real part of output
108
- z_imag: (n // 2 + 1,), imag part of output
109
- """
110
- n_rfft = self.n // 2 + 1
111
- z_real = torch.matmul(x_real, self.W_real[..., 0 : n_rfft])
112
- z_imag = torch.matmul(x_real, self.W_imag[..., 0 : n_rfft])
113
- # shape: (n // 2 + 1,)
114
-
115
- if self.norm is None:
116
- pass
117
- elif self.norm == 'ortho':
118
- z_real /= math.sqrt(self.n)
119
- z_imag /= math.sqrt(self.n)
120
-
121
- return z_real, z_imag
122
-
123
- def irdft(self, x_real, x_imag):
124
- r"""Calculate IRDFT of signal.
125
-
126
- Args:
127
- x_real: (n // 2 + 1,), real part of a signal
128
- x_imag: (n // 2 + 1,), imag part of a signal
129
-
130
- Returns:
131
- z_real: (n,), real part of output
132
- z_imag: (n,), imag part of output
133
- """
134
- n_rfft = self.n // 2 + 1
135
-
136
- flip_x_real = torch.flip(x_real, dims=(-1,))
137
- flip_x_imag = torch.flip(x_imag, dims=(-1,))
138
- # shape: (n // 2 + 1,)
139
-
140
- x_real = torch.cat((x_real, flip_x_real[..., 1 : n_rfft - 1]), dim=-1)
141
- x_imag = torch.cat((x_imag, -1. * flip_x_imag[..., 1 : n_rfft - 1]), dim=-1)
142
- # shape: (n,)
143
-
144
- z_real = torch.matmul(x_real, self.inv_W_real) - torch.matmul(x_imag, self.inv_W_imag)
145
- # shape: (n,)
146
-
147
- if self.norm is None:
148
- z_real /= self.n
149
- elif self.norm == 'ortho':
150
- z_real /= math.sqrt(n)
151
-
152
- return z_real
153
-
154
-
155
- class STFT(DFTBase):
156
- def __init__(self, n_fft=2048, hop_length=None, win_length=None,
157
- window='hann', center=True, pad_mode='reflect', freeze_parameters=True):
158
- r"""PyTorch implementation of STFT with Conv1d. The function has the
159
- same output as librosa.stft.
160
-
161
- Args:
162
- n_fft: int, fft window size, e.g., 2048
163
- hop_length: int, hop length samples, e.g., 441
164
- win_length: int, window length e.g., 2048
165
- window: str, window function name, e.g., 'hann'
166
- center: bool
167
- pad_mode: str, e.g., 'reflect'
168
- freeze_parameters: bool, set to True to freeze all parameters. Set
169
- to False to finetune all parameters.
170
- """
171
- super(STFT, self).__init__()
172
-
173
- assert pad_mode in ['constant', 'reflect']
174
-
175
- self.n_fft = n_fft
176
- self.hop_length = hop_length
177
- self.win_length = win_length
178
- self.window = window
179
- self.center = center
180
- self.pad_mode = pad_mode
181
-
182
- # By default, use the entire frame.
183
- if self.win_length is None:
184
- self.win_length = n_fft
185
-
186
- # Set the default hop, if it's not already specified.
187
- if self.hop_length is None:
188
- self.hop_length = int(self.win_length // 4)
189
-
190
- fft_window = librosa.filters.get_window(window, self.win_length, fftbins=True)
191
-
192
- # Pad the window out to n_fft size.
193
- fft_window = librosa.util.pad_center(fft_window, size=n_fft)
194
-
195
- # DFT & IDFT matrix.
196
- self.W = self.dft_matrix(n_fft)
197
-
198
- out_channels = n_fft // 2 + 1
199
-
200
- self.conv_real = nn.Conv1d(in_channels=1, out_channels=out_channels,
201
- kernel_size=n_fft, stride=self.hop_length, padding=0, dilation=1,
202
- groups=1, bias=False)
203
-
204
- self.conv_imag = nn.Conv1d(in_channels=1, out_channels=out_channels,
205
- kernel_size=n_fft, stride=self.hop_length, padding=0, dilation=1,
206
- groups=1, bias=False)
207
-
208
- # Initialize Conv1d weights.
209
- self.conv_real.weight.data.copy_(torch.Tensor(
210
- np.real(self.W[:, 0 : out_channels] * fft_window[:, None]).T)[:, None, :])
211
- # (n_fft // 2 + 1, 1, n_fft)
212
-
213
- self.conv_imag.weight.data.copy_(torch.Tensor(
214
- np.imag(self.W[:, 0 : out_channels] * fft_window[:, None]).T)[:, None, :])
215
- # (n_fft // 2 + 1, 1, n_fft)
216
-
217
- if freeze_parameters:
218
- for param in self.parameters():
219
- param.requires_grad = False
220
-
221
- def forward(self, input):
222
- r"""Calculate STFT of batch of signals.
223
-
224
- Args:
225
- input: (batch_size, data_length), input signals.
226
-
227
- Returns:
228
- real: (batch_size, 1, time_steps, n_fft // 2 + 1)
229
- imag: (batch_size, 1, time_steps, n_fft // 2 + 1)
230
- """
231
-
232
- x = input[:, None, :] # (batch_size, channels_num, data_length)
233
-
234
- if self.center:
235
- x = F.pad(x, pad=(self.n_fft // 2, self.n_fft // 2), mode=self.pad_mode)
236
-
237
- real = self.conv_real(x)
238
- imag = self.conv_imag(x)
239
- # (batch_size, n_fft // 2 + 1, time_steps)
240
-
241
- real = real[:, None, :, :].transpose(2, 3)
242
- imag = imag[:, None, :, :].transpose(2, 3)
243
- # (batch_size, 1, time_steps, n_fft // 2 + 1)
244
-
245
- return real, imag
246
-
247
-
248
- def magphase(real, imag):
249
- r"""Calculate magnitude and phase from real and imag part of signals.
250
-
251
- Args:
252
- real: tensor, real part of signals
253
- imag: tensor, imag part of signals
254
-
255
- Returns:
256
- mag: tensor, magnitude of signals
257
- cos: tensor, cosine of phases of signals
258
- sin: tensor, sine of phases of signals
259
- """
260
- mag = (real ** 2 + imag ** 2) ** 0.5
261
- cos = real / torch.clamp(mag, 1e-10, np.inf)
262
- sin = imag / torch.clamp(mag, 1e-10, np.inf)
263
-
264
- return mag, cos, sin
265
-
266
-
267
- class ISTFT(DFTBase):
268
- def __init__(self, n_fft=2048, hop_length=None, win_length=None,
269
- window='hann', center=True, pad_mode='reflect', freeze_parameters=True,
270
- onnx=False, frames_num=None, device=None):
271
- """PyTorch implementation of ISTFT with Conv1d. The function has the
272
- same output as librosa.istft.
273
-
274
- Args:
275
- n_fft: int, fft window size, e.g., 2048
276
- hop_length: int, hop length samples, e.g., 441
277
- win_length: int, window length e.g., 2048
278
- window: str, window function name, e.g., 'hann'
279
- center: bool
280
- pad_mode: str, e.g., 'reflect'
281
- freeze_parameters: bool, set to True to freeze all parameters. Set
282
- to False to finetune all parameters.
283
- onnx: bool, set to True when exporting trained model to ONNX. This
284
- will replace several operations to operators supported by ONNX.
285
- frames_num: None | int, number of frames of audio clips to be
286
- inferneced. Only useable when onnx=True.
287
- device: None | str, device of ONNX. Only useable when onnx=True.
288
- """
289
- super(ISTFT, self).__init__()
290
-
291
- assert pad_mode in ['constant', 'reflect']
292
-
293
- if not onnx:
294
- assert frames_num is None, "When onnx=False, frames_num must be None!"
295
- assert device is None, "When onnx=False, device must be None!"
296
-
297
- self.n_fft = n_fft
298
- self.hop_length = hop_length
299
- self.win_length = win_length
300
- self.window = window
301
- self.center = center
302
- self.pad_mode = pad_mode
303
- self.onnx = onnx
304
-
305
- # By default, use the entire frame.
306
- if self.win_length is None:
307
- self.win_length = self.n_fft
308
-
309
- # Set the default hop, if it's not already specified.
310
- if self.hop_length is None:
311
- self.hop_length = int(self.win_length // 4)
312
-
313
- # Initialize Conv1d modules for calculating real and imag part of DFT.
314
- self.init_real_imag_conv()
315
-
316
- # Initialize overlap add window for reconstruct time domain signals.
317
- self.init_overlap_add_window()
318
-
319
- if self.onnx:
320
- # Initialize ONNX modules.
321
- self.init_onnx_modules(frames_num, device)
322
-
323
- if freeze_parameters:
324
- for param in self.parameters():
325
- param.requires_grad = False
326
-
327
- def init_real_imag_conv(self):
328
- r"""Initialize Conv1d for calculating real and imag part of DFT.
329
- """
330
- self.W = self.idft_matrix(self.n_fft) / self.n_fft
331
-
332
- self.conv_real = nn.Conv1d(in_channels=self.n_fft, out_channels=self.n_fft,
333
- kernel_size=1, stride=1, padding=0, dilation=1,
334
- groups=1, bias=False)
335
-
336
- self.conv_imag = nn.Conv1d(in_channels=self.n_fft, out_channels=self.n_fft,
337
- kernel_size=1, stride=1, padding=0, dilation=1,
338
- groups=1, bias=False)
339
-
340
- ifft_window = librosa.filters.get_window(self.window, self.win_length, fftbins=True)
341
- # (win_length,)
342
-
343
- # Pad the window to n_fft
344
- ifft_window = librosa.util.pad_center(ifft_window, size=self.n_fft)
345
-
346
- self.conv_real.weight.data = torch.Tensor(
347
- np.real(self.W * ifft_window[None, :]).T)[:, :, None]
348
- # (n_fft // 2 + 1, 1, n_fft)
349
-
350
- self.conv_imag.weight.data = torch.Tensor(
351
- np.imag(self.W * ifft_window[None, :]).T)[:, :, None]
352
- # (n_fft // 2 + 1, 1, n_fft)
353
-
354
- def init_overlap_add_window(self):
355
- r"""Initialize overlap add window for reconstruct time domain signals.
356
- """
357
-
358
- ola_window = librosa.filters.get_window(self.window, self.win_length, fftbins=True)
359
- # (win_length,)
360
-
361
- ola_window = librosa.util.normalize(ola_window, norm=None) ** 2
362
- ola_window = librosa.util.pad_center(ola_window, size=self.n_fft)
363
- ola_window = torch.Tensor(ola_window)
364
-
365
- self.register_buffer('ola_window', ola_window)
366
- # (win_length,)
367
-
368
- def init_onnx_modules(self, frames_num, device):
369
- r"""Initialize ONNX modules.
370
-
371
- Args:
372
- frames_num: int
373
- device: str | None
374
- """
375
-
376
- # Use Conv1d to implement torch.flip(), because torch.flip() is not
377
- # supported by ONNX.
378
- self.reverse = nn.Conv1d(in_channels=self.n_fft // 2 + 1,
379
- out_channels=self.n_fft // 2 - 1, kernel_size=1, bias=False)
380
-
381
- tmp = np.zeros((self.n_fft // 2 - 1, self.n_fft // 2 + 1, 1))
382
- tmp[:, 1 : -1, 0] = np.array(np.eye(self.n_fft // 2 - 1)[::-1])
383
- self.reverse.weight.data = torch.Tensor(tmp)
384
- # (n_fft // 2 - 1, n_fft // 2 + 1, 1)
385
-
386
- # Use nn.ConvTranspose2d to implement torch.nn.functional.fold(),
387
- # because torch.nn.functional.fold() is not supported by ONNX.
388
- self.overlap_add = nn.ConvTranspose2d(in_channels=self.n_fft,
389
- out_channels=1, kernel_size=(self.n_fft, 1), stride=(self.hop_length, 1), bias=False)
390
-
391
- self.overlap_add.weight.data = torch.Tensor(np.eye(self.n_fft)[:, None, :, None])
392
- # (n_fft, 1, n_fft, 1)
393
-
394
- if frames_num:
395
- # Pre-calculate overlap-add window sum for reconstructing signals
396
- # when using ONNX.
397
- self.ifft_window_sum = self._get_ifft_window_sum_onnx(frames_num, device)
398
- else:
399
- self.ifft_window_sum = []
400
-
401
- def forward(self, real_stft, imag_stft, length):
402
- r"""Calculate inverse STFT.
403
-
404
- Args:
405
- real_stft: (batch_size, channels=1, time_steps, n_fft // 2 + 1)
406
- imag_stft: (batch_size, channels=1, time_steps, n_fft // 2 + 1)
407
- length: int
408
-
409
- Returns:
410
- real: (batch_size, data_length), output signals.
411
- """
412
- assert real_stft.ndimension() == 4 and imag_stft.ndimension() == 4
413
- batch_size, _, frames_num, _ = real_stft.shape
414
-
415
- real_stft = real_stft[:, 0, :, :].transpose(1, 2)
416
- imag_stft = imag_stft[:, 0, :, :].transpose(1, 2)
417
- # (batch_size, n_fft // 2 + 1, time_steps)
418
-
419
- # Get full stft representation from spectrum using symmetry attribute.
420
- if self.onnx:
421
- full_real_stft, full_imag_stft = self._get_full_stft_onnx(real_stft, imag_stft)
422
- else:
423
- full_real_stft, full_imag_stft = self._get_full_stft(real_stft, imag_stft)
424
- # full_real_stft: (batch_size, n_fft, time_steps)
425
- # full_imag_stft: (batch_size, n_fft, time_steps)
426
-
427
- # Calculate IDFT frame by frame.
428
- s_real = self.conv_real(full_real_stft) - self.conv_imag(full_imag_stft)
429
- # (batch_size, n_fft, time_steps)
430
-
431
- # Overlap add signals in frames to reconstruct signals.
432
- if self.onnx:
433
- y = self._overlap_add_divide_window_sum_onnx(s_real, frames_num)
434
- else:
435
- y = self._overlap_add_divide_window_sum(s_real, frames_num)
436
- # y: (batch_size, audio_samples + win_length,)
437
-
438
- y = self._trim_edges(y, length)
439
- # (batch_size, audio_samples,)
440
-
441
- return y
442
-
443
- def _get_full_stft(self, real_stft, imag_stft):
444
- r"""Get full stft representation from spectrum using symmetry attribute.
445
-
446
- Args:
447
- real_stft: (batch_size, n_fft // 2 + 1, time_steps)
448
- imag_stft: (batch_size, n_fft // 2 + 1, time_steps)
449
-
450
- Returns:
451
- full_real_stft: (batch_size, n_fft, time_steps)
452
- full_imag_stft: (batch_size, n_fft, time_steps)
453
- """
454
- full_real_stft = torch.cat((real_stft, torch.flip(real_stft[:, 1 : -1, :], dims=[1])), dim=1)
455
- full_imag_stft = torch.cat((imag_stft, - torch.flip(imag_stft[:, 1 : -1, :], dims=[1])), dim=1)
456
-
457
- return full_real_stft, full_imag_stft
458
-
459
- def _get_full_stft_onnx(self, real_stft, imag_stft):
460
- r"""Get full stft representation from spectrum using symmetry attribute
461
- for ONNX. Replace several pytorch operations in self._get_full_stft()
462
- that are not supported by ONNX.
463
-
464
- Args:
465
- real_stft: (batch_size, n_fft // 2 + 1, time_steps)
466
- imag_stft: (batch_size, n_fft // 2 + 1, time_steps)
467
-
468
- Returns:
469
- full_real_stft: (batch_size, n_fft, time_steps)
470
- full_imag_stft: (batch_size, n_fft, time_steps)
471
- """
472
-
473
- # Implement torch.flip() with Conv1d.
474
- full_real_stft = torch.cat((real_stft, self.reverse(real_stft)), dim=1)
475
- full_imag_stft = torch.cat((imag_stft, - self.reverse(imag_stft)), dim=1)
476
-
477
- return full_real_stft, full_imag_stft
478
-
479
- def _overlap_add_divide_window_sum(self, s_real, frames_num):
480
- r"""Overlap add signals in frames to reconstruct signals.
481
-
482
- Args:
483
- s_real: (batch_size, n_fft, time_steps), signals in frames
484
- frames_num: int
485
-
486
- Returns:
487
- y: (batch_size, audio_samples)
488
- """
489
-
490
- output_samples = (s_real.shape[-1] - 1) * self.hop_length + self.win_length
491
- # (audio_samples,)
492
-
493
- # Overlap-add signals in frames to signals. Ref:
494
- # asteroid_filterbanks.torch_stft_fb.torch_stft_fb() from
495
- # https://github.com/asteroid-team/asteroid-filterbanks
496
- y = torch.nn.functional.fold(input=s_real, output_size=(1, output_samples),
497
- kernel_size=(1, self.win_length), stride=(1, self.hop_length))
498
- # (batch_size, 1, 1, audio_samples,)
499
-
500
- y = y[:, 0, 0, :]
501
- # (batch_size, audio_samples)
502
-
503
- # Get overlap-add window sum to be divided.
504
- ifft_window_sum = self._get_ifft_window(frames_num)
505
- # (audio_samples,)
506
-
507
- # Following code is abandaned for divide overlap-add window, because
508
- # not supported by half precision training and ONNX.
509
- # min_mask = ifft_window_sum.abs() < 1e-11
510
- # y[:, ~min_mask] = y[:, ~min_mask] / ifft_window_sum[None, ~min_mask]
511
- # # (batch_size, audio_samples)
512
-
513
- ifft_window_sum = torch.clamp(ifft_window_sum, 1e-11, np.inf)
514
- # (audio_samples,)
515
-
516
- y = y / ifft_window_sum[None, :]
517
- # (batch_size, audio_samples,)
518
-
519
- return y
520
-
521
- def _get_ifft_window(self, frames_num):
522
- r"""Get overlap-add window sum to be divided.
523
-
524
- Args:
525
- frames_num: int
526
-
527
- Returns:
528
- ifft_window_sum: (audio_samlpes,), overlap-add window sum to be
529
- divided.
530
- """
531
-
532
- output_samples = (frames_num - 1) * self.hop_length + self.win_length
533
- # (audio_samples,)
534
-
535
- window_matrix = self.ola_window[None, :, None].repeat(1, 1, frames_num)
536
- # (batch_size, win_length, time_steps)
537
-
538
- ifft_window_sum = F.fold(input=window_matrix,
539
- output_size=(1, output_samples), kernel_size=(1, self.win_length),
540
- stride=(1, self.hop_length))
541
- # (1, 1, 1, audio_samples)
542
-
543
- ifft_window_sum = ifft_window_sum.squeeze()
544
- # (audio_samlpes,)
545
-
546
- return ifft_window_sum
547
-
548
- def _overlap_add_divide_window_sum_onnx(self, s_real, frames_num):
549
- r"""Overlap add signals in frames to reconstruct signals for ONNX.
550
- Replace several pytorch operations in
551
- self._overlap_add_divide_window_sum() that are not supported by ONNX.
552
-
553
- Args:
554
- s_real: (batch_size, n_fft, time_steps), signals in frames
555
- frames_num: int
556
-
557
- Returns:
558
- y: (batch_size, audio_samples)
559
- """
560
-
561
- s_real = s_real[..., None]
562
- # (batch_size, n_fft, time_steps, 1)
563
-
564
- # Implement overlap-add with Conv1d, because torch.nn.functional.fold()
565
- # is not supported by ONNX.
566
- y = self.overlap_add(s_real)[:, 0, :, 0]
567
- # y: (batch_size, samples_num)
568
-
569
- if len(self.ifft_window_sum) != y.shape[1]:
570
- device = s_real.device
571
-
572
- self.ifft_window_sum = self._get_ifft_window_sum_onnx(frames_num, device)
573
- # (audio_samples,)
574
-
575
- # Use torch.clamp() to prevent from underflow to make sure all
576
- # operations are supported by ONNX.
577
- ifft_window_sum = torch.clamp(self.ifft_window_sum, 1e-11, np.inf)
578
- # (audio_samples,)
579
-
580
- y = y / ifft_window_sum[None, :]
581
- # (batch_size, audio_samples,)
582
-
583
- return y
584
-
585
- def _get_ifft_window_sum_onnx(self, frames_num, device):
586
- r"""Pre-calculate overlap-add window sum for reconstructing signals when
587
- using ONNX.
588
-
589
- Args:
590
- frames_num: int
591
- device: str | None
592
-
593
- Returns:
594
- ifft_window_sum: (audio_samples,)
595
- """
596
-
597
- ifft_window_sum = librosa.filters.window_sumsquare(window=self.window,
598
- n_frames=frames_num, win_length=self.win_length, n_fft=self.n_fft,
599
- hop_length=self.hop_length)
600
- # (audio_samples,)
601
-
602
- ifft_window_sum = torch.Tensor(ifft_window_sum)
603
-
604
- if device:
605
- ifft_window_sum = ifft_window_sum.to(device)
606
-
607
- return ifft_window_sum
608
-
609
- def _trim_edges(self, y, length):
610
- r"""Trim audio.
611
-
612
- Args:
613
- y: (audio_samples,)
614
- length: int
615
-
616
- Returns:
617
- (trimmed_audio_samples,)
618
- """
619
- # Trim or pad to length
620
- if length is None:
621
- if self.center:
622
- y = y[:, self.n_fft // 2 : -self.n_fft // 2]
623
- else:
624
- if self.center:
625
- start = self.n_fft // 2
626
- else:
627
- start = 0
628
-
629
- y = y[:, start : start + length]
630
-
631
- return y
632
-
633
-
634
- class Spectrogram(nn.Module):
635
- def __init__(self, n_fft=2048, hop_length=None, win_length=None,
636
- window='hann', center=True, pad_mode='reflect', power=2.0,
637
- freeze_parameters=True):
638
- r"""Calculate spectrogram using pytorch. The STFT is implemented with
639
- Conv1d. The function has the same output of librosa.stft
640
- """
641
- super(Spectrogram, self).__init__()
642
-
643
- self.power = power
644
-
645
- self.stft = STFT(n_fft=n_fft, hop_length=hop_length,
646
- win_length=win_length, window=window, center=center,
647
- pad_mode=pad_mode, freeze_parameters=True)
648
-
649
- def forward(self, input):
650
- r"""Calculate spectrogram of input signals.
651
- Args:
652
- input: (batch_size, data_length)
653
-
654
- Returns:
655
- spectrogram: (batch_size, 1, time_steps, n_fft // 2 + 1)
656
- """
657
-
658
- (real, imag) = self.stft.forward(input)
659
- # (batch_size, n_fft // 2 + 1, time_steps)
660
-
661
- spectrogram = real ** 2 + imag ** 2
662
-
663
- if self.power == 2.0:
664
- pass
665
- else:
666
- spectrogram = spectrogram ** (self.power / 2.0)
667
-
668
- return spectrogram
669
-
670
-
671
- class LogmelFilterBank(nn.Module):
672
- def __init__(self, sr=22050, n_fft=2048, n_mels=64, fmin=0.0, fmax=None,
673
- is_log=True, ref=1.0, amin=1e-10, top_db=80.0, freeze_parameters=True):
674
- r"""Calculate logmel spectrogram using pytorch. The mel filter bank is
675
- the pytorch implementation of as librosa.filters.mel
676
- """
677
- super(LogmelFilterBank, self).__init__()
678
-
679
- self.is_log = is_log
680
- self.ref = ref
681
- self.amin = amin
682
- self.top_db = top_db
683
- if fmax == None:
684
- fmax = sr//2
685
-
686
- self.melW = librosa.filters.mel(sr=sr, n_fft=n_fft, n_mels=n_mels,
687
- fmin=fmin, fmax=fmax).T
688
- # (n_fft // 2 + 1, mel_bins)
689
-
690
- self.melW = nn.Parameter(torch.Tensor(self.melW).contiguous())
691
-
692
- if freeze_parameters:
693
- for param in self.parameters():
694
- param.requires_grad = False
695
-
696
- def forward(self, input):
697
- r"""Calculate (log) mel spectrogram from spectrogram.
698
-
699
- Args:
700
- input: (*, n_fft), spectrogram
701
-
702
- Returns:
703
- output: (*, mel_bins), (log) mel spectrogram
704
- """
705
-
706
- # Mel spectrogram
707
- mel_spectrogram = torch.matmul(input, self.melW)
708
- # (*, mel_bins)
709
-
710
- # Logmel spectrogram
711
- if self.is_log:
712
- output = self.power_to_db(mel_spectrogram)
713
- else:
714
- output = mel_spectrogram
715
-
716
- return output
717
-
718
-
719
- def power_to_db(self, input):
720
- r"""Power to db, this function is the pytorch implementation of
721
- librosa.power_to_lb
722
- """
723
- ref_value = self.ref
724
- log_spec = 10.0 * torch.log10(torch.clamp(input, min=self.amin, max=np.inf))
725
- log_spec -= 10.0 * np.log10(np.maximum(self.amin, ref_value))
726
-
727
- if self.top_db is not None:
728
- if self.top_db < 0:
729
- raise librosa.util.exceptions.ParameterError('top_db must be non-negative')
730
- log_spec = torch.clamp(log_spec, min=log_spec.max().item() - self.top_db, max=np.inf)
731
-
732
- return log_spec
733
-
734
-
735
- class Enframe(nn.Module):
736
- def __init__(self, frame_length=2048, hop_length=512):
737
- r"""Enframe a time sequence. This function is the pytorch implementation
738
- of librosa.util.frame
739
- """
740
- super(Enframe, self).__init__()
741
-
742
- self.enframe_conv = nn.Conv1d(in_channels=1, out_channels=frame_length,
743
- kernel_size=frame_length, stride=hop_length,
744
- padding=0, bias=False)
745
-
746
- self.enframe_conv.weight.data = torch.Tensor(torch.eye(frame_length)[:, None, :])
747
- self.enframe_conv.weight.requires_grad = False
748
-
749
- def forward(self, input):
750
- r"""Enframe signals into frames.
751
- Args:
752
- input: (batch_size, samples)
753
-
754
- Returns:
755
- output: (batch_size, window_length, frames_num)
756
- """
757
- output = self.enframe_conv(input[:, None, :])
758
- return output
759
-
760
-
761
- def power_to_db(self, input):
762
- r"""Power to db, this function is the pytorch implementation of
763
- librosa.power_to_lb.
764
- """
765
- ref_value = self.ref
766
- log_spec = 10.0 * torch.log10(torch.clamp(input, min=self.amin, max=np.inf))
767
- log_spec -= 10.0 * np.log10(np.maximum(self.amin, ref_value))
768
-
769
- if self.top_db is not None:
770
- if self.top_db < 0:
771
- raise librosa.util.exceptions.ParameterError('top_db must be non-negative')
772
- log_spec = torch.clamp(log_spec, min=log_spec.max() - self.top_db, max=np.inf)
773
-
774
- return log_spec
775
-
776
-
777
- class Scalar(nn.Module):
778
- def __init__(self, scalar, freeze_parameters):
779
- super(Scalar, self).__init__()
780
-
781
- self.scalar_mean = Parameter(torch.Tensor(scalar['mean']))
782
- self.scalar_std = Parameter(torch.Tensor(scalar['std']))
783
-
784
- if freeze_parameters:
785
- for param in self.parameters():
786
- param.requires_grad = False
787
-
788
- def forward(self, input):
789
- return (input - self.scalar_mean) / self.scalar_std
790
-
791
-
792
- def debug(select, device):
793
- """Compare numpy + librosa and torchlibrosa results. For debug.
794
-
795
- Args:
796
- select: 'dft' | 'logmel'
797
- device: 'cpu' | 'cuda'
798
- """
799
-
800
- if select == 'dft':
801
- n = 10
802
- norm = None # None | 'ortho'
803
- np.random.seed(0)
804
-
805
- # Data
806
- np_data = np.random.uniform(-1, 1, n)
807
- pt_data = torch.Tensor(np_data)
808
-
809
- # Numpy FFT
810
- np_fft = np.fft.fft(np_data, norm=norm)
811
- np_ifft = np.fft.ifft(np_fft, norm=norm)
812
- np_rfft = np.fft.rfft(np_data, norm=norm)
813
- np_irfft = np.fft.ifft(np_rfft, norm=norm)
814
-
815
- # Pytorch FFT
816
- obj = DFT(n, norm)
817
- pt_dft = obj.dft(pt_data, torch.zeros_like(pt_data))
818
- pt_idft = obj.idft(pt_dft[0], pt_dft[1])
819
- pt_rdft = obj.rdft(pt_data)
820
- pt_irdft = obj.irdft(pt_rdft[0], pt_rdft[1])
821
-
822
- print('Comparing librosa and pytorch implementation of DFT. All numbers '
823
- 'below should be close to 0.')
824
- print(np.mean((np.abs(np.real(np_fft) - pt_dft[0].cpu().numpy()))))
825
- print(np.mean((np.abs(np.imag(np_fft) - pt_dft[1].cpu().numpy()))))
826
-
827
- print(np.mean((np.abs(np.real(np_ifft) - pt_idft[0].cpu().numpy()))))
828
- print(np.mean((np.abs(np.imag(np_ifft) - pt_idft[1].cpu().numpy()))))
829
-
830
- print(np.mean((np.abs(np.real(np_rfft) - pt_rdft[0].cpu().numpy()))))
831
- print(np.mean((np.abs(np.imag(np_rfft) - pt_rdft[1].cpu().numpy()))))
832
-
833
- print(np.mean(np.abs(np_data - pt_irdft.cpu().numpy())))
834
-
835
- elif select == 'stft':
836
- device = torch.device(device)
837
- np.random.seed(0)
838
-
839
- # Spectrogram parameters (the same as librosa.stft)
840
- sample_rate = 22050
841
- data_length = sample_rate * 1
842
- n_fft = 2048
843
- hop_length = 512
844
- win_length = 2048
845
- window = 'hann'
846
- center = True
847
- pad_mode = 'reflect'
848
-
849
- # Data
850
- np_data = np.random.uniform(-1, 1, data_length)
851
- pt_data = torch.Tensor(np_data).to(device)
852
-
853
- # Numpy stft matrix
854
- np_stft_matrix = librosa.stft(y=np_data, n_fft=n_fft,
855
- hop_length=hop_length, window=window, center=center).T
856
-
857
- # Pytorch stft matrix
858
- pt_stft_extractor = STFT(n_fft=n_fft, hop_length=hop_length,
859
- win_length=win_length, window=window, center=center, pad_mode=pad_mode,
860
- freeze_parameters=True)
861
-
862
- pt_stft_extractor.to(device)
863
-
864
- (pt_stft_real, pt_stft_imag) = pt_stft_extractor.forward(pt_data[None, :])
865
-
866
- print('Comparing librosa and pytorch implementation of STFT & ISTFT. \
867
- All numbers below should be close to 0.')
868
- print(np.mean(np.abs(np.real(np_stft_matrix) - pt_stft_real.data.cpu().numpy()[0, 0])))
869
- print(np.mean(np.abs(np.imag(np_stft_matrix) - pt_stft_imag.data.cpu().numpy()[0, 0])))
870
-
871
- # Numpy istft
872
- np_istft_s = librosa.istft(stft_matrix=np_stft_matrix.T,
873
- hop_length=hop_length, window=window, center=center, length=data_length)
874
-
875
- # Pytorch istft
876
- pt_istft_extractor = ISTFT(n_fft=n_fft, hop_length=hop_length,
877
- win_length=win_length, window=window, center=center, pad_mode=pad_mode,
878
- freeze_parameters=True)
879
- pt_istft_extractor.to(device)
880
-
881
- # Recover from real and imag part
882
- pt_istft_s = pt_istft_extractor.forward(pt_stft_real, pt_stft_imag, data_length)[0, :]
883
-
884
- # Recover from magnitude and phase
885
- (pt_stft_mag, cos, sin) = magphase(pt_stft_real, pt_stft_imag)
886
- pt_istft_s2 = pt_istft_extractor.forward(pt_stft_mag * cos, pt_stft_mag * sin, data_length)[0, :]
887
-
888
- print(np.mean(np.abs(np_istft_s - pt_istft_s.data.cpu().numpy())))
889
- print(np.mean(np.abs(np_data - pt_istft_s.data.cpu().numpy())))
890
- print(np.mean(np.abs(np_data - pt_istft_s2.data.cpu().numpy())))
891
-
892
- elif select == 'logmel':
893
- dtype = np.complex64
894
- device = torch.device(device)
895
- np.random.seed(0)
896
-
897
- # Spectrogram parameters (the same as librosa.stft)
898
- sample_rate = 22050
899
- data_length = sample_rate * 1
900
- n_fft = 2048
901
- hop_length = 512
902
- win_length = 2048
903
- window = 'hann'
904
- center = True
905
- pad_mode = 'reflect'
906
-
907
- # Mel parameters (the same as librosa.feature.melspectrogram)
908
- n_mels = 128
909
- fmin = 0.
910
- fmax = sample_rate / 2.0
911
-
912
- # Power to db parameters (the same as default settings of librosa.power_to_db
913
- ref = 1.0
914
- amin = 1e-10
915
- top_db = 80.0
916
-
917
- # Data
918
- np_data = np.random.uniform(-1, 1, data_length)
919
- pt_data = torch.Tensor(np_data).to(device)
920
-
921
- print('Comparing librosa and pytorch implementation of logmel '
922
- 'spectrogram. All numbers below should be close to 0.')
923
-
924
- # Numpy librosa
925
- np_stft_matrix = librosa.stft(y=np_data, n_fft=n_fft, hop_length=hop_length,
926
- win_length=win_length, window=window, center=center, dtype=dtype,
927
- pad_mode=pad_mode)
928
-
929
- np_pad = np.pad(np_data, int(n_fft // 2), mode=pad_mode)
930
-
931
- np_melW = librosa.filters.mel(sr=sample_rate, n_fft=n_fft, n_mels=n_mels,
932
- fmin=fmin, fmax=fmax).T
933
-
934
- np_mel_spectrogram = np.dot(np.abs(np_stft_matrix.T) ** 2, np_melW)
935
-
936
- np_logmel_spectrogram = librosa.power_to_db(
937
- np_mel_spectrogram, ref=ref, amin=amin, top_db=top_db)
938
-
939
- # Pytorch
940
- stft_extractor = STFT(n_fft=n_fft, hop_length=hop_length,
941
- win_length=win_length, window=window, center=center, pad_mode=pad_mode,
942
- freeze_parameters=True)
943
-
944
- logmel_extractor = LogmelFilterBank(sr=sample_rate, n_fft=n_fft,
945
- n_mels=n_mels, fmin=fmin, fmax=fmax, ref=ref, amin=amin,
946
- top_db=top_db, freeze_parameters=True)
947
-
948
- stft_extractor.to(device)
949
- logmel_extractor.to(device)
950
-
951
- pt_pad = F.pad(pt_data[None, None, :], pad=(n_fft // 2, n_fft // 2), mode=pad_mode)[0, 0]
952
- print(np.mean(np.abs(np_pad - pt_pad.cpu().numpy())))
953
-
954
- pt_stft_matrix_real = stft_extractor.conv_real(pt_pad[None, None, :])[0]
955
- pt_stft_matrix_imag = stft_extractor.conv_imag(pt_pad[None, None, :])[0]
956
- print(np.mean(np.abs(np.real(np_stft_matrix) - pt_stft_matrix_real.data.cpu().numpy())))
957
- print(np.mean(np.abs(np.imag(np_stft_matrix) - pt_stft_matrix_imag.data.cpu().numpy())))
958
-
959
- # Spectrogram
960
- spectrogram_extractor = Spectrogram(n_fft=n_fft, hop_length=hop_length,
961
- win_length=win_length, window=window, center=center, pad_mode=pad_mode,
962
- freeze_parameters=True)
963
-
964
- spectrogram_extractor.to(device)
965
-
966
- pt_spectrogram = spectrogram_extractor.forward(pt_data[None, :])
967
- pt_mel_spectrogram = torch.matmul(pt_spectrogram, logmel_extractor.melW)
968
- print(np.mean(np.abs(np_mel_spectrogram - pt_mel_spectrogram.data.cpu().numpy()[0, 0])))
969
-
970
- # Log mel spectrogram
971
- pt_logmel_spectrogram = logmel_extractor.forward(pt_spectrogram)
972
- print(np.mean(np.abs(np_logmel_spectrogram - pt_logmel_spectrogram[0, 0].data.cpu().numpy())))
973
-
974
- elif select == 'enframe':
975
- device = torch.device(device)
976
- np.random.seed(0)
977
-
978
- # Spectrogram parameters (the same as librosa.stft)
979
- sample_rate = 22050
980
- data_length = sample_rate * 1
981
- hop_length = 512
982
- win_length = 2048
983
-
984
- # Data
985
- np_data = np.random.uniform(-1, 1, data_length)
986
- pt_data = torch.Tensor(np_data).to(device)
987
-
988
- print('Comparing librosa and pytorch implementation of '
989
- 'librosa.util.frame. All numbers below should be close to 0.')
990
-
991
- # Numpy librosa
992
- np_frames = librosa.util.frame(np_data, frame_length=win_length,
993
- hop_length=hop_length)
994
-
995
- # Pytorch
996
- pt_frame_extractor = Enframe(frame_length=win_length, hop_length=hop_length)
997
- pt_frame_extractor.to(device)
998
-
999
- pt_frames = pt_frame_extractor(pt_data[None, :])
1000
- print(np.mean(np.abs(np_frames - pt_frames.data.cpu().numpy())))
1001
-
1002
- elif select == 'default':
1003
- device = torch.device(device)
1004
- np.random.seed(0)
1005
-
1006
- # Spectrogram parameters (the same as librosa.stft)
1007
- sample_rate = 22050
1008
- data_length = sample_rate * 1
1009
- hop_length = 512
1010
- win_length = 2048
1011
-
1012
- # Mel parameters (the same as librosa.feature.melspectrogram)
1013
- n_mels = 128
1014
-
1015
- # Data
1016
- np_data = np.random.uniform(-1, 1, data_length)
1017
- pt_data = torch.Tensor(np_data).to(device)
1018
-
1019
- feature_extractor = nn.Sequential(
1020
- Spectrogram(
1021
- hop_length=hop_length,
1022
- win_length=win_length,
1023
- ), LogmelFilterBank(
1024
- sr=sample_rate,
1025
- n_mels=n_mels,
1026
- is_log=False, #Default is true
1027
- ))
1028
-
1029
- feature_extractor.to(device)
1030
-
1031
- print(
1032
- 'Comparing default mel spectrogram from librosa to the pytorch implementation.'
1033
- )
1034
-
1035
- # Numpy librosa
1036
- np_melspect = librosa.feature.melspectrogram(np_data,
1037
- hop_length=hop_length,
1038
- sr=sample_rate,
1039
- win_length=win_length,
1040
- n_mels=n_mels).T
1041
- #Pytorch
1042
- pt_melspect = feature_extractor(pt_data[None, :]).squeeze()
1043
- passed = np.allclose(pt_melspect.data.to('cpu').numpy(), np_melspect)
1044
- print(f"Passed? {passed}")
1045
-
1046
-
1047
-
1048
- if __name__ == '__main__':
1049
-
1050
- parser = argparse.ArgumentParser(description='')
1051
- parser.add_argument('--device', type=str, default='cpu', choices=['cpu', 'cuda'])
1052
- args = parser.parse_args()
1053
-
1054
- device = args.device
1055
- norm = None # None | 'ortho'
1056
- np.random.seed(0)
1057
-
1058
- # Spectrogram parameters (the same as librosa.stft)
1059
- sample_rate = 22050
1060
- data_length = sample_rate * 1
1061
- n_fft = 2048
1062
- hop_length = 512
1063
- win_length = 2048
1064
- window = 'hann'
1065
- center = True
1066
- pad_mode = 'reflect'
1067
-
1068
- # Mel parameters (the same as librosa.feature.melspectrogram)
1069
- n_mels = 128
1070
- fmin = 0.
1071
- fmax = sample_rate / 2.0
1072
-
1073
- # Power to db parameters (the same as default settings of librosa.power_to_db
1074
- ref = 1.0
1075
- amin = 1e-10
1076
- top_db = 80.0
1077
-
1078
- # Data
1079
- np_data = np.random.uniform(-1, 1, data_length)
1080
- pt_data = torch.Tensor(np_data).to(device)
1081
-
1082
- # Pytorch
1083
- spectrogram_extractor = Spectrogram(n_fft=n_fft, hop_length=hop_length,
1084
- win_length=win_length, window=window, center=center, pad_mode=pad_mode,
1085
- freeze_parameters=True)
1086
-
1087
- logmel_extractor = LogmelFilterBank(sr=sample_rate, n_fft=n_fft,
1088
- n_mels=n_mels, fmin=fmin, fmax=fmax, ref=ref, amin=amin, top_db=top_db,
1089
- freeze_parameters=True)
1090
-
1091
- spectrogram_extractor.to(device)
1092
- logmel_extractor.to(device)
1093
-
1094
- # Spectrogram
1095
- pt_spectrogram = spectrogram_extractor.forward(pt_data[None, :])
1096
-
1097
- # Log mel spectrogram
1098
- pt_logmel_spectrogram = logmel_extractor.forward(pt_spectrogram)
1099
-
1100
- # Uncomment for debug
1101
- if True:
1102
- debug(select='dft', device=device)
1103
- debug(select='stft', device=device)
1104
- debug(select='logmel', device=device)
1105
- debug(select='enframe', device=device)
1106
-
1107
- try:
1108
- debug(select='default', device=device)
1109
- except:
1110
- raise Exception('Torchlibrosa does support librosa>=0.6.0, for \
1111
- comparison with librosa, please use librosa>=0.7.0!')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/vision_transformer.py DELETED
@@ -1,176 +0,0 @@
1
- import math
2
- from functools import reduce
3
- from operator import mul
4
- from ipdb import set_trace
5
-
6
- import torch
7
- import torch.nn.functional as F
8
- import torch.nn as nn
9
- from mmcls.models.backbones import VisionTransformer as _VisionTransformer
10
- from mmcls.models.utils import to_2tuple
11
- from mmcv.cnn.bricks.transformer import PatchEmbed
12
- from torch.nn.modules.batchnorm import _BatchNorm
13
-
14
-
15
- def build_2d_sincos_position_embedding(patches_resolution,
16
- embed_dims,
17
- temperature=10000.,
18
- cls_token=False):
19
- """The function is to build position embedding for model to obtain the
20
- position information of the image patches."""
21
-
22
- if isinstance(patches_resolution, int):
23
- patches_resolution = (patches_resolution, patches_resolution)
24
-
25
- h, w = patches_resolution
26
- grid_w = torch.arange(w, dtype=torch.float32)
27
- grid_h = torch.arange(h, dtype=torch.float32)
28
- grid_w, grid_h = torch.meshgrid(grid_w, grid_h)
29
- assert embed_dims % 4 == 0, \
30
- 'Embed dimension must be divisible by 4.'
31
- pos_dim = embed_dims // 4
32
-
33
- omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
34
- omega = 1. / (temperature**omega)
35
- out_w = torch.einsum('m,d->md', [grid_w.flatten(), omega])
36
- out_h = torch.einsum('m,d->md', [grid_h.flatten(), omega])
37
-
38
- pos_emb = torch.cat(
39
- [
40
- torch.sin(out_w),
41
- torch.cos(out_w),
42
- torch.sin(out_h),
43
- torch.cos(out_h)
44
- ],
45
- dim=1,
46
- )[None, :, :]
47
-
48
- if cls_token:
49
- cls_token_pe = torch.zeros([1, 1, embed_dims], dtype=torch.float32)
50
- pos_emb = torch.cat([cls_token_pe, pos_emb], dim=1)
51
-
52
- return pos_emb
53
-
54
-
55
- class VisionTransformer(_VisionTransformer):
56
- """Vision Transformer.
57
-
58
- A pytorch implement of: `An Images is Worth 16x16 Words: Transformers for
59
- Image Recognition at Scale <https://arxiv.org/abs/2010.11929>`_.
60
-
61
- Part of the code is modified from:
62
- `<https://github.com/facebookresearch/moco-v3/blob/main/vits.py>`_.
63
-
64
- Args:
65
- stop_grad_conv1 (bool, optional): whether to stop the gradient of
66
- convolution layer in `PatchEmbed`. Defaults to False.
67
- frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
68
- -1 means not freezing any parameters. Defaults to -1.
69
- norm_eval (bool): Whether to set norm layers to eval mode, namely,
70
- freeze running stats (mean and var). Note: Effect on Batch Norm
71
- and its variants only. Defaults to False.
72
- init_cfg (dict or list[dict], optional): Initialization config dict.
73
- Defaults to None.
74
- """
75
-
76
- arch_zoo = {
77
- **dict.fromkeys(
78
- ['mocov3-s', 'mocov3-small'], {
79
- 'embed_dims': 384,
80
- 'num_layers': 12,
81
- 'num_heads': 12,
82
- 'feedforward_channels': 1536,
83
- }),
84
- **dict.fromkeys(
85
- ['b', 'base'], {
86
- 'embed_dims': 768,
87
- 'num_layers': 12,
88
- 'num_heads': 12,
89
- 'feedforward_channels': 3072
90
- }),
91
- }
92
-
93
- def __init__(self,
94
- stop_grad_conv1=False,
95
- frozen_stages=-1,
96
- norm_eval=False,
97
- init_cfg=None,
98
- **kwargs):
99
- super(VisionTransformer, self).__init__(init_cfg=init_cfg,)
100
- self.patch_size = kwargs['patch_size']
101
- self.frozen_stages = frozen_stages
102
- self.norm_eval = norm_eval
103
- self.init_cfg = init_cfg
104
-
105
-
106
- if isinstance(self.patch_embed, PatchEmbed):
107
- if stop_grad_conv1:
108
- self.patch_embed.projection.weight.requires_grad = False
109
- self.patch_embed.projection.bias.requires_grad = False
110
-
111
- self._freeze_stages()
112
-
113
- def init_weights(self):
114
- super(VisionTransformer, self).init_weights()
115
-
116
- if not (isinstance(self.init_cfg, dict)
117
- and self.init_cfg['type'] == 'Pretrained'):
118
-
119
- # Use fixed 2D sin-cos position embedding
120
- pos_emb = build_2d_sincos_position_embedding(
121
- patches_resolution=self.patch_resolution,
122
- embed_dims=self.embed_dims,
123
- cls_token=True)
124
- self.pos_embed.data.copy_(pos_emb)
125
- self.pos_embed.requires_grad = False
126
-
127
- # xavier_uniform initialization for PatchEmbed
128
- if isinstance(self.patch_embed, PatchEmbed):
129
- val = math.sqrt(
130
- 6. / float(3 * reduce(mul, to_2tuple(self.patch_size), 1) +
131
- self.embed_dims))
132
- nn.init.uniform_(self.patch_embed.projection.weight, -val, val)
133
- nn.init.zeros_(self.patch_embed.projection.bias)
134
-
135
- # initialization for linear layers
136
- for name, m in self.named_modules():
137
- if isinstance(m, nn.Linear):
138
- if 'qkv' in name:
139
- # treat the weights of Q, K, V separately
140
- val = math.sqrt(
141
- 6. /
142
- float(m.weight.shape[0] // 3 + m.weight.shape[1]))
143
- nn.init.uniform_(m.weight, -val, val)
144
- else:
145
- nn.init.xavier_uniform_(m.weight)
146
- nn.init.zeros_(m.bias)
147
- nn.init.normal_(self.cls_token, std=1e-6)
148
-
149
- def _freeze_stages(self):
150
- """Freeze patch_embed layer, some parameters and stages."""
151
- if self.frozen_stages >= 0:
152
- self.patch_embed.eval()
153
- for param in self.patch_embed.parameters():
154
- param.requires_grad = False
155
-
156
- self.cls_token.requires_grad = False
157
- self.pos_embed.requires_grad = False
158
-
159
- for i in range(1, self.frozen_stages + 1):
160
- m = self.layers[i - 1]
161
- m.eval()
162
- for param in m.parameters():
163
- param.requires_grad = False
164
-
165
- if i == (self.num_layers) and self.final_norm:
166
- for param in getattr(self, 'norm1').parameters():
167
- param.requires_grad = False
168
-
169
- def train(self, mode=True):
170
- super(VisionTransformer, self).train(mode)
171
- self._freeze_stages()
172
- if mode and self.norm_eval:
173
- for m in self.modules():
174
- # trick: eval have effect on BatchNorm only
175
- if isinstance(m, _BatchNorm):
176
- m.eval()