--- base_model: UW-Madison-Lee-Lab/Llama-PRM800K library_name: peft license: llama3.1 tags: - generated_from_trainer model-index: - name: VersaPRM-Math-Subset results: [] --- # VersaPRM-Math-Subset This model is a fine-tuned version of [UW-Madison-Lee-Lab/Llama-PRM800K](https://huggingface.co/UW-Madison-Lee-Lab/Llama-PRM800K) on the __math category subset__ of [UW-Madison-Lee-Lab/MMLU-Pro-CoT-Train-Labeled](https://huggingface.co/datasets/UW-Madison-Lee-Lab/MMLU-Pro-CoT-Train-Labeled). ## Get rewards ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer def get_tokenizer(model_id): tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = 'left' tokenizer.truncation_side = 'left' return tokenizer device = 'cuda' if torch.cuda.is_available() else 'cpu' tokenizer = get_tokenizer('UW-Madison-Lee-Lab/VersaPRM-Math-Subset') model = AutoModelForCausalLM.from_pretrained('UW-Madison-Lee-Lab/VersaPRM-Math-Subset') candidate_tokens = [12, 10] model.to(device) question = 'Question: In Python 3, which of the following function convert a string to an int in python?\nA. short(x)\nB. float(x)\nC. integer(x [,base])\nD. double(x)\nE. int(x [,base])\nF. long(x [,base] )\nG. num(x)\nH. str(x)\nI. char(x)\nJ. digit(x [,base])' solution = ["To convert a string to an integer in Python 3, we use the built-in function int().", "The int() function takes two arguments: the string to be converted and an optional base (default is 10, which is for decimal).", "For example: int(\"123\", 10) converts the string \"123\" to the integer 123.", "Looking at the options, we can see that the correct function is option E: int(x [,base]).", "The answer is (E)."] input_text = question + ' \n\n' + ' \n\n\n\n'.join(solution) + ' \n\n\n\n' # solution steps are separated by ' \n\n\n\n' input_id = torch.tensor([tokenizer.encode(input_text)]).to(device) with torch.no_grad(): logits = model(input_id).logits[:,:,candidate_tokens] scores = logits.softmax(dim=-1)[:,:,1] step_scores = scores[input_id == 23535] step_probs = step_scores.tolist() ```