File size: 2,023 Bytes
f898006 5715a5b a450979 a477a18 fe6b980 18e8034 fe6b980 18e8034 fe6b980 18e8034 fe6b980 4567d88 fe6b980 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
language: ar
license: other
tags:
- vision
- image-captioning
pipeline_tag: image-to-text
---
# 🦚 Peacock
🦚 Peacock is an InstructBLIP based-model that uses AraLLaMA as its language model. It was introduced in the paper [Peacock: A Family of Arabic Multimodal Large Language Models and Benchmarks](https://arxiv.org/abs/2403.01031).
# How to use
Usage is as follows:
```
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration
import torch
from PIL import Image
import requests
model = InstructBlipForConditionalGeneration.from_pretrained("UBC-NLP/Peacock")
processor = InstructBlipProcessor.from_pretrained("UBC-NLP/Peacock")
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
url = "https://upload.wikimedia.org/wikipedia/commons/8/83/Socotra_dragon_tree.JPG"
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
prompt = "اوصف الصوره"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(device)
outputs = model.generate(
**inputs,
do_sample=False,
num_beams=5,
max_length=256,
min_length=1,
top_p=0.9,
repetition_penalty=1.5,
length_penalty=1.0,
temperature=1,
)
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip()
print(generated_text)
```
# Citation
If you use this model, please cite the following paper:
```bibtex
@inproceedings{alwajih2024peacock,
title = {Peacock: A Family of Arabic Multimodal Large Language Models and Benchmarks},
author = {Alwajih, Fakhraddin and Nagoudi, El Moatez Billah and Bhatia, Gagan and Mohamed, Abdelrahman and Abdul-Mageed, Muhammad},
booktitle = {Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
pages = {12753--12776},
year = {2024},
address = {Bangkok, Thailand},
publisher = {Association for Computational Linguistics},
url = {https://aclanthology.org/2024.acl-long.689}
}
``` |