{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d675671ba40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702453503672081021, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqxrjuPLnW6uzH5uVLdarVDRUk5aNYPOQAAgD8AAIA/miRfvbg3rru+gDE8G1c5PO8RCz0DGiC9AACAPwAAgD9mLt+9rnG3uhzsKzz1yli1HireOTPJR7QAAIA/AAAAAHN7kT33s+c+M9o2vkc/iL5fZtu92KKdPAAAAAAAAAAAZvl7Pvy6ZD9rN829o1mXvsoEkz6IVFO+AAAAAAAAAAAzCgY99vRluvbGTLjR0GOzy5RIO2BObzcAAIA/AACAP83wxrzs8ei5HpDwumSvU7Z5PPI6ZZ8OOgAAgD8AAIA/DTYHvnHHXbvbFje8kRwwumoAkDwCxxg7AACAPwAAgD+ARoo9SGuFumZ1BDykwp00ueaZOiDZlzMAAIA/AACAP0A+s717qom6kGNqu4e1grjyOEy7EkQ2OgAAgD8AAAAATU0pPYmGsj6DPR2+W2xcvjLgtL3KT4q9AAAAAAAAAABNiLo9siqiP145jT4/E9u+7cwyPpqyijwAAAAAAAAAANqjiL1cN1m6qPijO7Quh7W66IE7ZlSCtAAAgD8AAIA/c0wVvvbsYztiOV88SiA3ugeOF7078SQ7AACAPwAAgD82FYO+uFgCP2v8pD3xYpm+/sJKvWXKlLwAAAAAAAAAAGaq2LyFgKm7jWmyPKY/NL4JQYk8HpxPvgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGJBUqhDgIiMAWyUTegDjAF0lEdAlQaV1bJOnHV9lChoBkdAZWtqveP7vWgHTegDaAhHQJUHMYj0L+h1fZQoaAZHQGbNLmyPdVNoB03oA2gIR0CVEXX3QD3edX2UKGgGR0BijyLGaQV9aAdN6ANoCEdAlRJuPvKEFnV9lChoBkdAYRtyeZof0WgHTegDaAhHQJUZxtXPqs51fZQoaAZHQGHhKxLTQVtoB03oA2gIR0CVGptO2y9mdX2UKGgGR0BWWtwFTvRaaAdN6ANoCEdAlRrcByS3b3V9lChoBkdAPL0iILw4KmgHTSABaAhHQJUdbHcUM5R1fZQoaAZHQGMPihWYF7loB03oA2gIR0CVHo94NZvDdX2UKGgGR0BnaoomXw9aaAdN6ANoCEdAlSBFKoQ4CXV9lChoBkdAY3Z6IFeOXGgHTegDaAhHQJUh8tZmqYJ1fZQoaAZHQFyRK6WgOBloB03oA2gIR0CVP5l8gIQfdX2UKGgGR0BiBf+qBEroaAdN6ANoCEdAlUGtWQwK0HV9lChoBkdAY3blGPPszGgHTegDaAhHQJVFfdRBNVR1fZQoaAZHQCJ5ZKWcBltoB0vDaAhHQJVQrAtWdVh1fZQoaAZHQGNFNpM6BAhoB03oA2gIR0CVVC8BMi8ndX2UKGgGR0Bi6QcYIjW1aAdN6ANoCEdAlWAjMJQcgnV9lChoBkdANPXPqs2ehGgHS9toCEdAlWkURzzVc3V9lChoBkdAY4M/qPfbbmgHTegDaAhHQJVs2Rp1zQx1fZQoaAZHQGG+I8yN4qxoB03oA2gIR0CVbv3Q2MsIdX2UKGgGR0BdA77sOXmeaAdN6ANoCEdAlXuXD7655XV9lChoBkdAYcfhTfixV2gHTegDaAhHQJV8pJFspG51fZQoaAZHQGOr1klNUOxoB03oA2gIR0CVg8zlLeyidX2UKGgGR0BkNlSQ5myxaAdN6ANoCEdAlYSckhRqGnV9lChoBkdAYqr3xnWat2gHTegDaAhHQJWE0ZGax5d1fZQoaAZHQGH2jYAbQ1JoB03oA2gIR0CVhs3Jgb6ydX2UKGgGR0BkBvc32mHhaAdN6ANoCEdAlYeyLIgeR3V9lChoBkdAYvVZsbedkWgHTegDaAhHQJWJE4Qz1sd1fZQoaAZHQGLUUmlZX+5oB03oA2gIR0CVinicG1QZdX2UKGgGR0Bhm5q0tyxSaAdN6ANoCEdAlaa6zJIUanV9lChoBkdASO18ma6ST2gHS9FoCEdAlalo51eSjnV9lChoBkdAYtlXwLE1mGgHTegDaAhHQJWsduvUz9F1fZQoaAZHQGPelWwNb1RoB03oA2gIR0CVtj64UeuFdX2UKGgGR0BowVU6xPfsaAdN6ANoCEdAlcOEMG5c1XV9lChoBkdAZj3Ho5ggHWgHTegDaAhHQJXJbnJT2nN1fZQoaAZHQF6gZha1TitoB03oA2gIR0CVy7dmg8KYdX2UKGgGR0Bldpi7TUiIaAdN6ANoCEdAlczVwLmZE3V9lChoBkdAY1i0w8GLUGgHTegDaAhHQJXYpGkN4JN1fZQoaAZHQGJ/w71ZkkNoB03oA2gIR0CV2eQsf7rLdX2UKGgGR0Be5tKAavRraAdN6ANoCEdAleJrW7OE/XV9lChoBkdAZurHuqm0mmgHTegDaAhHQJXjLX05EMN1fZQoaAZHQGANxDb8FZBoB03oA2gIR0CV42Tb349HdX2UKGgGR0Bh1bOs1baAaAdN6ANoCEdAleaSxVyWA3V9lChoBkdAX2Y2hqTKT2gHTegDaAhHQJXoQWLxZuB1fZQoaAZHQGdH2pZOi35oB03oA2gIR0CV6bjMV1wHdX2UKGgGR0BlpHZIxxkvaAdN6ANoCEdAlgM5djXnQ3V9lChoBkdAYzXe4TbnHWgHTegDaAhHQJYFiYMOPNp1fZQoaAZHQGNuzPSlWOpoB03oA2gIR0CWCG5dnkDIdX2UKGgGR0BlYqeCkGiYaAdN6ANoCEdAlhWqm4y44XV9lChoBkdAQrWtr9ETg2gHS/xoCEdAlh9GcvugH3V9lChoBkdAZkQdwNsnA2gHTegDaAhHQJYkpbwBo251fZQoaAZHQGXhynk1dgRoB03oA2gIR0CWKttL+PzWdX2UKGgGR0Bg0pBAv+OwaAdN6ANoCEdAli04TK1XvHV9lChoBkdAZmIO2iL2pWgHTegDaAhHQJYuet5le4V1fZQoaAZHQGPZzBqKxcFoB03oA2gIR0CWOK4zrNW3dX2UKGgGR0BjfWmUGFBZaAdN6ANoCEdAljm4KYzBRHV9lChoBkdAY7/TPSlWO2gHTegDaAhHQJZA7buc+aB1fZQoaAZHQGWh33pOerdoB03oA2gIR0CWQikk8ifQdX2UKGgGR0BjvnRkVeruaAdN6ANoCEdAlkJ7XL/0d3V9lChoBkdAX57eEZiuuGgHTegDaAhHQJZHPjo6jnF1fZQoaAZHQGAG+TvAoG9oB03oA2gIR0CWSWmJ3xFzdX2UKGgGR0BjojcCYCyRaAdN6ANoCEdAlku9HpbD/HV9lChoBkdAQJJzzVc2SGgHS61oCEdAllAX7P6bfHV9lChoBkdAY/EsKb8WK2gHTegDaAhHQJZTeouPFNt1fZQoaAZHQGTGBE8aGYdoB03oA2gIR0CWaoD2rXDndX2UKGgGR0Be6RQrMC9zaAdN6ANoCEdAlnjtkauOj3V9lChoBkdAWz9IxxkupWgHTegDaAhHQJaFdzp5eJJ1fZQoaAZHQGVagXl8w6BoB03oA2gIR0CWjAwnH/96dX2UKGgGR0BkputGNJe3aAdN6ANoCEdAlpJA3cYZVHV9lChoBkdAZF9961LJ0WgHTegDaAhHQJaUmjnFHax1fZQoaAZHQGMF3cgyM1loB03oA2gIR0CWldsFdLQHdX2UKGgGR0BhvBF1B+nZaAdN6ANoCEdAlp/mbgCOm3V9lChoBkdAYm7UQ04zamgHTegDaAhHQJag1CMPz4F1fZQoaAZHQGYodAgPmPpoB03oA2gIR0CWqOjkuHvddX2UKGgGR0Bjdgcm0E5iaAdN6ANoCEdAlqkoF/x2CHV9lChoBkdAYJ8qrBCUo2gHTegDaAhHQJatKueSSvF1fZQoaAZHQGLRKAJ9iMJoB03oA2gIR0CWr1lJpWWAdX2UKGgGR0BnYq4OMERraAdN6ANoCEdAlrFZYLb5/XV9lChoBkdAY9FuLrHEM2gHTegDaAhHQJa2VbB42TB1fZQoaAZHQGdG5IYm9g5oB03oA2gIR0CWuyo9s7+2dX2UKGgGR0BDQ0r9VFQVaAdL22gIR0CWvCAf+0gKdX2UKGgGR0BmP3vBrN4aaAdN6ANoCEdAlr8KWHDaXnV9lChoBkdATK3KQq7ROWgHS8VoCEdAluDvvBrN4nV9lChoBkdAZFJhnanJk2gHTegDaAhHQJbilknTiKl1fZQoaAZHQGTXTt1IRRNoB03oA2gIR0CW7MwOvt+kdX2UKGgGR0Bgo2OKfnOjaAdN6ANoCEdAlvRmaMJhOXV9lChoBkdAYxUomXw9aGgHTegDaAhHQJb8kQWepXJ1fZQoaAZHQGBsDZtelbhoB03oA2gIR0CW/s2GqPwNdX2UKGgGR0Be5fd2xIJ7aAdN6ANoCEdAlv/t1QqI8HV9lChoBkdAEto0hvBJqmgHS79oCEdAlwRAo1DSgHV9lChoBkdAYxTnSv1UVGgHTegDaAhHQJcJaXE61b91fZQoaAZHQGKQJ6IFeOZoB03oA2gIR0CXClwn6VMVdX2UKGgGR0Bl0AX40uUVaAdN6ANoCEdAlxHsglnh9HV9lChoBkdAP0Q5Jbt7bGgHS9toCEdAlxOQE2YOUnV9lChoBkdAXt8yi22G7GgHTegDaAhHQJcV0DV6NVB1fZQoaAZHQGPmcXm/339oB03oA2gIR0CXF9V5KODKdX2UKGgGR0BkfeG9HtngaAdN6ANoCEdAlxmtOqNp/XV9lChoBkdAYl6sOG0u2GgHTegDaAhHQJcdJwtJ4B51fZQoaAZHQGIBngP3BYVoB03oA2gIR0CXIGbyYoiLdX2UKGgGR0Bl89sN2C/XaAdN6ANoCEdAlyM14s3AEnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}