TrungPT commited on
Commit
73b5d4f
·
1 Parent(s): 72d5fde
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -13.36 +/- 103.91
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d6756729d80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d6756729e10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d6756729ea0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d6756729f30>", "_build": "<function ActorCriticPolicy._build at 0x7d6756729fc0>", "forward": "<function ActorCriticPolicy.forward at 0x7d675672a050>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d675672a0e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d675672a170>", "_predict": "<function ActorCriticPolicy._predict at 0x7d675672a200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d675672a290>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d675672a320>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d675672a3b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d675671ba40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702453283630829924, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADN9RL5/ZTE/xln1vqALQr8BeTM+NpkKuwAAAAAAAAAAjefavVg2ez81L6K+LypDv6uvVT5mwz09AAAAAAAAAADa2Zk+RPhRP9hK7z6KrjK/cA1YPg3pJz4AAAAAAAAAABMNjz77II49QCPcPReqor/6Lf8+rmW0PgAAAAAAAAAAxkQKvm3gAD9LsCq+MvuRvxtIML6m9By+AAAAAAAAAABmnuM7Qdl+P69ymT1meje/b4/dvXv+XL4AAAAAAAAAAOZ5kD38lZU/9kk0PuN9Fr/bvJe9T8QxvQAAAAAAAAAAMAzKPt9YNT/bRg0/L5tUv90ZozuYE6C9AAAAAAAAAAA2Epm+mr3VPtOQ5L5lE4m/jjCtvubNR74AAAAAAAAAAADADzt9ark+U1kyPZQ6Y7/6gGu+65WdvgAAAAAAAAAAzdHMPFfkqz7Lk+s9CSmCv1L/k70j9/G9AAAAAAAAAAD6mp4+4g2eP+fOCj8MPP2+4QNSPuWMXD4AAAAAAAAAAM2CQD3SYqg/wh3VPiJYzr7bRw+9qPsyvQAAAAAAAAAAbRQtvvBysT8eWPK+upcrvhSrAL7+HS6+AAAAAAAAAACa7l+9waWuP85vR7+/67++RqARPVlClD0AAAAAAAAAAHZKY754Hog9FPoSPhu9nb/uEws++LnlPgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwD+L6Mzdk8SMAWyUS0uMAXSUR0BTncstkFwDdX2UKGgGR8BBMtOM2m52aAdLSmgIR0BTnV3hXKbKdX2UKGgGR8BXdU8/2TPjaAdLX2gIR0BToYdhiLEUdX2UKGgGR8BVc1hkRSP2aAdLS2gIR0BTpLtNSIgvdX2UKGgGR8BPwptix3V1aAdLQWgIR0BTqHWBjFyadX2UKGgGR8Be4ogvDgqFaAdLgGgIR0BTqGPxQSBcdX2UKGgGR8BOb2/8EV32aAdLamgIR0BTq6OxSpBHdX2UKGgGR8AfwC8vmHQAaAdLgGgIR0BTsJYcNpdsdX2UKGgGR8BTfsMiKR+0aAdLSmgIR0BTs8X3xnWbdX2UKGgGR8BUj12JSBK+aAdLT2gIR0BTuqYZ2pyZdX2UKGgGR8BOqPIXCTEBaAdLf2gIR0BTu0384xUOdX2UKGgGR8BbSEbHZK4AaAdLcGgIR0BTvQtJ4B3idX2UKGgGR8BeGMDGLk0aaAdLYGgIR0BTvsX7+DODdX2UKGgGR8BUIDyrgflqaAdLWGgIR0BTvjawljVhdX2UKGgGR8BUPAVTJhfCaAdLWWgIR0BTvwbuMMqjdX2UKGgGR8BatZA+pwS8aAdLcmgIR0BTw/2TPjXGdX2UKGgGR8Av94i5d4VzaAdLeGgIR0BTycqJ/G2kdX2UKGgGR8BRs/alDWsjaAdLZmgIR0BTyvkRzzVddX2UKGgGR8BSkA0Kqn3taAdLQWgIR0BTzEcXFcY7dX2UKGgGR8BJPOfVZs9CaAdLcmgIR0BTzIHHFPzndX2UKGgGR8BfFj6i0v4/aAdLX2gIR0BTzTl90A93dX2UKGgGR8BRHJ6yB06paAdLQGgIR0BT0fgFX7tRdX2UKGgGR8BS0VtGd7OWaAdLR2gIR0BT1adDpkf+dX2UKGgGR8BSZw0O3DvWaAdLeGgIR0BT1bThHbypdX2UKGgGR8Bl1cpTdcjaaAdLdGgIR0BT1r9ycTakdX2UKGgGR8BWLfdyksSTaAdLamgIR0BT148IRh+fdX2UKGgGR8BQl39R77bdaAdLT2gIR0BT2bnX/YJ3dX2UKGgGR8BWsxO+IuXeaAdLUWgIR0BT3PN/vv0AdX2UKGgGR8BZpitRvWH2aAdLUGgIR0BT4PJV81GcdX2UKGgGR8Bfk3wkPczqaAdLZmgIR0BT5LuDzyz5dX2UKGgGR8BiUW5WilBQaAdLUWgIR0BT6Q3HaN+9dX2UKGgGR8BAu8FyJbdKaAdLe2gIR0BT6+aF23a0dX2UKGgGR8BEKfMwDeTFaAdLPWgIR0BT7D0xubZwdX2UKGgGR8BfhIXoC+10aAdLYmgIR0BT7fr8iwB6dX2UKGgGR8BXiHKbKA8TaAdLYWgIR0BT8JtNzr/sdX2UKGgGR8BY2zPnjhkzaAdLVGgIR0BT8apcX3xndX2UKGgGR8BWnu54GD+SaAdLUmgIR0BT8/QF9roGdX2UKGgGR8BUfep84PwvaAdLSmgIR0BT81wHZ9NOdX2UKGgGR8BSp5tix3V1aAdLT2gIR0BT9Ezj3mFKdX2UKGgGR0BXJCVjZtelaAdN6ANoCEdAU/WBvrGBF3V9lChoBkfAV0C+xnnMdWgHS3toCEdAU/lDZ13dK3V9lChoBkfASqzmKZUkwGgHS09oCEdAU/2zAvcrRXV9lChoBkdALbz9sJpnH2gHS5FoCEdAVAAIMSbpeXV9lChoBkfAVaF7qptJnWgHS3FoCEdAVAFpudf9gnV9lChoBkfAQbF7a7EpAmgHS3BoCEdAVAMvDgqEvnV9lChoBkfAVrLgbZOBUmgHS0NoCEdAVAOdsi0OVnV9lChoBkfAWrvGHYYixGgHS2ZoCEdAVAa5H3Dej3V9lChoBkfAWrqKLsKLKmgHS05oCEdAVAhTkyULUnV9lChoBkfAXnxpN9H+ZWgHS2poCEdAVAtjDsMRYnV9lChoBkfAaV5EzfrKNmgHS2toCEdAVA2wIMSbpnV9lChoBkfAWTmdSVGCqmgHS1toCEdAVA6gPEsJ6nV9lChoBkfAWdBKf4AS4GgHS3poCEdAVBKdCmdiD3V9lChoBkfAVFU+/xlQM2gHS0NoCEdAVBPnnuAqeHV9lChoBkfAWrWUQkHD8GgHS2hoCEdAVBOajN6gNHV9lChoBkfAU+O7jDKoymgHS3ZoCEdAVBcomXw9aHV9lChoBkfAWM6iqQzUJGgHS1loCEdAVBc+otL+P3V9lChoBkfASV3FWGRFJGgHS0VoCEdAVBsX3xnWa3V9lChoBkfARB4/FBIFvGgHS49oCEdAVBxl+Vkc0nV9lChoBkfAb1fvddmg8WgHS2doCEdAVCANz8xbjnV9lChoBkfAWjqz1K5CnmgHS4RoCEdAVCB46fapP3V9lChoBkfAV65LAYYR/WgHS2ZoCEdAVCGWJJoTPHV9lChoBkfANHzOcDr7f2gHS5ZoCEdAVCJpsXSBsnV9lChoBkfAYW5I1+AmRmgHS09oCEdAVCZXxOLzgHV9lChoBkfAWzRtxdY4hmgHS1poCEdAVCbw2ETQFHV9lChoBkfAWJMnkT6BRWgHS3hoCEdAVChjMFEApHV9lChoBkfAS7UVeruIAWgHS0RoCEdAVCiNdZ7ojnV9lChoBkfAWNgFyJbdJ2gHS1VoCEdAVCjt0FKTS3V9lChoBkfAU5N8JD3M6mgHS39oCEdAVC835vcafnV9lChoBkfAPpYtQKrq+2gHS0doCEdAVDEAWBSUDHV9lChoBkfARg+8oQWepWgHS2hoCEdAVDHi1iONpHV9lChoBkfAQhdQoCuEEmgHS1FoCEdAVDXwkPczqXV9lChoBkfAVyaT0QK8c2gHS2doCEdAVDcSUTtb93V9lChoBkfAUa1Pk7wKB2gHS0xoCEdAVDeLYPGyX3V9lChoBkfAUhIqnWJ79mgHS0poCEdAVDd1gYxcmnV9lChoBkfAUBEmw7kn1GgHS3toCEdAVDkNSZSeiHV9lChoBkfAWyeqzZ6D5GgHS1ZoCEdAVDzLmp2lmHV9lChoBkfAVu6OinHeamgHS0poCEdAVDw51eSjg3V9lChoBkfAV/A5DJEH+2gHS11oCEdAVD4oLG7z1HV9lChoBkfANpaJIlMRH2gHS4JoCEdAVD7dadMCcXV9lChoBkfAVvA3cYZVGWgHS1VoCEdAVD+LwWnCO3V9lChoBkfAUby6/Zdv9GgHS15oCEdAVEPeLvTgEXV9lChoBkfATNXUKArhBWgHS0xoCEdAVEicWj4593V9lChoBkfAQwriMo+fRWgHS3JoCEdAVEpGmUGFBnV9lChoBkfAU+YcYIjW1GgHS1toCEdAVEviFTNt7HV9lChoBkfAU9Bp5/smfGgHS0xoCEdAVEwJng5zYHV9lChoBkfAUu5FnZkCm2gHS3toCEdAVEyVqveP73V9lChoBkfAVLrsqrilzmgHS1BoCEdAVE8gW8AaN3V9lChoBkfAUH2fSQYDT2gHS2hoCEdAVFZIRRMviHV9lChoBkfARTfIZIg/1WgHS01oCEdAVFZucc2itnV9lChoBkfAUflGjKxLTWgHS2FoCEdAVFoAPuogm3V9lChoBkfARS72OAAhjmgHS5BoCEdAVFp4iX6ZY3V9lChoBkfAUI2/UONHY2gHS1loCEdAVFrT/hl183V9lChoBkfATSQkZ75VO2gHS01oCEdAVFuH/Lkjo3V9lChoBkfAT687p3X7L2gHS3toCEdAVFzkgfU4JnV9lChoBkfAa7J8YQ8OkWgHS3doCEdAVF1/nW8RMHV9lChoBkfAVMyRZEDyOWgHS2hoCEdAVF4K9f1Hv3V9lChoBkfAVolosZpBX2gHS31oCEdAVGFsBQvYe3V9lChoBkfAWQp0dRzij2gHS0poCEdAVGMEaESM+HV9lChoBkfAWywBhhH9WWgHS1hoCEdAVGf0TURWcXV9lChoBkfAXg761stTUGgHS2toCEdAVGn6xgRbr3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b451dda4c5d8052435d929f30891a8e7a171d768a3da930e145030407097871
3
+ size 147921
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7d6756729d80>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d6756729e10>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d6756729ea0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d6756729f30>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7d6756729fc0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7d675672a050>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d675672a0e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d675672a170>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7d675672a200>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d675672a290>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d675672a320>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d675672a3b0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7d675671ba40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 114688,
25
+ "_total_timesteps": 100000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1702453283630829924,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADN9RL5/ZTE/xln1vqALQr8BeTM+NpkKuwAAAAAAAAAAjefavVg2ez81L6K+LypDv6uvVT5mwz09AAAAAAAAAADa2Zk+RPhRP9hK7z6KrjK/cA1YPg3pJz4AAAAAAAAAABMNjz77II49QCPcPReqor/6Lf8+rmW0PgAAAAAAAAAAxkQKvm3gAD9LsCq+MvuRvxtIML6m9By+AAAAAAAAAABmnuM7Qdl+P69ymT1meje/b4/dvXv+XL4AAAAAAAAAAOZ5kD38lZU/9kk0PuN9Fr/bvJe9T8QxvQAAAAAAAAAAMAzKPt9YNT/bRg0/L5tUv90ZozuYE6C9AAAAAAAAAAA2Epm+mr3VPtOQ5L5lE4m/jjCtvubNR74AAAAAAAAAAADADzt9ark+U1kyPZQ6Y7/6gGu+65WdvgAAAAAAAAAAzdHMPFfkqz7Lk+s9CSmCv1L/k70j9/G9AAAAAAAAAAD6mp4+4g2eP+fOCj8MPP2+4QNSPuWMXD4AAAAAAAAAAM2CQD3SYqg/wh3VPiJYzr7bRw+9qPsyvQAAAAAAAAAAbRQtvvBysT8eWPK+upcrvhSrAL7+HS6+AAAAAAAAAACa7l+9waWuP85vR7+/67++RqARPVlClD0AAAAAAAAAAHZKY754Hog9FPoSPhu9nb/uEws++LnlPgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.1468799999999999,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwD+L6Mzdk8SMAWyUS0uMAXSUR0BTncstkFwDdX2UKGgGR8BBMtOM2m52aAdLSmgIR0BTnV3hXKbKdX2UKGgGR8BXdU8/2TPjaAdLX2gIR0BToYdhiLEUdX2UKGgGR8BVc1hkRSP2aAdLS2gIR0BTpLtNSIgvdX2UKGgGR8BPwptix3V1aAdLQWgIR0BTqHWBjFyadX2UKGgGR8Be4ogvDgqFaAdLgGgIR0BTqGPxQSBcdX2UKGgGR8BOb2/8EV32aAdLamgIR0BTq6OxSpBHdX2UKGgGR8AfwC8vmHQAaAdLgGgIR0BTsJYcNpdsdX2UKGgGR8BTfsMiKR+0aAdLSmgIR0BTs8X3xnWbdX2UKGgGR8BUj12JSBK+aAdLT2gIR0BTuqYZ2pyZdX2UKGgGR8BOqPIXCTEBaAdLf2gIR0BTu0384xUOdX2UKGgGR8BbSEbHZK4AaAdLcGgIR0BTvQtJ4B3idX2UKGgGR8BeGMDGLk0aaAdLYGgIR0BTvsX7+DODdX2UKGgGR8BUIDyrgflqaAdLWGgIR0BTvjawljVhdX2UKGgGR8BUPAVTJhfCaAdLWWgIR0BTvwbuMMqjdX2UKGgGR8BatZA+pwS8aAdLcmgIR0BTw/2TPjXGdX2UKGgGR8Av94i5d4VzaAdLeGgIR0BTycqJ/G2kdX2UKGgGR8BRs/alDWsjaAdLZmgIR0BTyvkRzzVddX2UKGgGR8BSkA0Kqn3taAdLQWgIR0BTzEcXFcY7dX2UKGgGR8BJPOfVZs9CaAdLcmgIR0BTzIHHFPzndX2UKGgGR8BfFj6i0v4/aAdLX2gIR0BTzTl90A93dX2UKGgGR8BRHJ6yB06paAdLQGgIR0BT0fgFX7tRdX2UKGgGR8BS0VtGd7OWaAdLR2gIR0BT1adDpkf+dX2UKGgGR8BSZw0O3DvWaAdLeGgIR0BT1bThHbypdX2UKGgGR8Bl1cpTdcjaaAdLdGgIR0BT1r9ycTakdX2UKGgGR8BWLfdyksSTaAdLamgIR0BT148IRh+fdX2UKGgGR8BQl39R77bdaAdLT2gIR0BT2bnX/YJ3dX2UKGgGR8BWsxO+IuXeaAdLUWgIR0BT3PN/vv0AdX2UKGgGR8BZpitRvWH2aAdLUGgIR0BT4PJV81GcdX2UKGgGR8Bfk3wkPczqaAdLZmgIR0BT5LuDzyz5dX2UKGgGR8BiUW5WilBQaAdLUWgIR0BT6Q3HaN+9dX2UKGgGR8BAu8FyJbdKaAdLe2gIR0BT6+aF23a0dX2UKGgGR8BEKfMwDeTFaAdLPWgIR0BT7D0xubZwdX2UKGgGR8BfhIXoC+10aAdLYmgIR0BT7fr8iwB6dX2UKGgGR8BXiHKbKA8TaAdLYWgIR0BT8JtNzr/sdX2UKGgGR8BY2zPnjhkzaAdLVGgIR0BT8apcX3xndX2UKGgGR8BWnu54GD+SaAdLUmgIR0BT8/QF9roGdX2UKGgGR8BUfep84PwvaAdLSmgIR0BT81wHZ9NOdX2UKGgGR8BSp5tix3V1aAdLT2gIR0BT9Ezj3mFKdX2UKGgGR0BXJCVjZtelaAdN6ANoCEdAU/WBvrGBF3V9lChoBkfAV0C+xnnMdWgHS3toCEdAU/lDZ13dK3V9lChoBkfASqzmKZUkwGgHS09oCEdAU/2zAvcrRXV9lChoBkdALbz9sJpnH2gHS5FoCEdAVAAIMSbpeXV9lChoBkfAVaF7qptJnWgHS3FoCEdAVAFpudf9gnV9lChoBkfAQbF7a7EpAmgHS3BoCEdAVAMvDgqEvnV9lChoBkfAVrLgbZOBUmgHS0NoCEdAVAOdsi0OVnV9lChoBkfAWrvGHYYixGgHS2ZoCEdAVAa5H3Dej3V9lChoBkfAWrqKLsKLKmgHS05oCEdAVAhTkyULUnV9lChoBkfAXnxpN9H+ZWgHS2poCEdAVAtjDsMRYnV9lChoBkfAaV5EzfrKNmgHS2toCEdAVA2wIMSbpnV9lChoBkfAWTmdSVGCqmgHS1toCEdAVA6gPEsJ6nV9lChoBkfAWdBKf4AS4GgHS3poCEdAVBKdCmdiD3V9lChoBkfAVFU+/xlQM2gHS0NoCEdAVBPnnuAqeHV9lChoBkfAWrWUQkHD8GgHS2hoCEdAVBOajN6gNHV9lChoBkfAU+O7jDKoymgHS3ZoCEdAVBcomXw9aHV9lChoBkfAWM6iqQzUJGgHS1loCEdAVBc+otL+P3V9lChoBkfASV3FWGRFJGgHS0VoCEdAVBsX3xnWa3V9lChoBkfARB4/FBIFvGgHS49oCEdAVBxl+Vkc0nV9lChoBkfAb1fvddmg8WgHS2doCEdAVCANz8xbjnV9lChoBkfAWjqz1K5CnmgHS4RoCEdAVCB46fapP3V9lChoBkfAV65LAYYR/WgHS2ZoCEdAVCGWJJoTPHV9lChoBkfANHzOcDr7f2gHS5ZoCEdAVCJpsXSBsnV9lChoBkfAYW5I1+AmRmgHS09oCEdAVCZXxOLzgHV9lChoBkfAWzRtxdY4hmgHS1poCEdAVCbw2ETQFHV9lChoBkfAWJMnkT6BRWgHS3hoCEdAVChjMFEApHV9lChoBkfAS7UVeruIAWgHS0RoCEdAVCiNdZ7ojnV9lChoBkfAWNgFyJbdJ2gHS1VoCEdAVCjt0FKTS3V9lChoBkfAU5N8JD3M6mgHS39oCEdAVC835vcafnV9lChoBkfAPpYtQKrq+2gHS0doCEdAVDEAWBSUDHV9lChoBkfARg+8oQWepWgHS2hoCEdAVDHi1iONpHV9lChoBkfAQhdQoCuEEmgHS1FoCEdAVDXwkPczqXV9lChoBkfAVyaT0QK8c2gHS2doCEdAVDcSUTtb93V9lChoBkfAUa1Pk7wKB2gHS0xoCEdAVDeLYPGyX3V9lChoBkfAUhIqnWJ79mgHS0poCEdAVDd1gYxcmnV9lChoBkfAUBEmw7kn1GgHS3toCEdAVDkNSZSeiHV9lChoBkfAWyeqzZ6D5GgHS1ZoCEdAVDzLmp2lmHV9lChoBkfAVu6OinHeamgHS0poCEdAVDw51eSjg3V9lChoBkfAV/A5DJEH+2gHS11oCEdAVD4oLG7z1HV9lChoBkfANpaJIlMRH2gHS4JoCEdAVD7dadMCcXV9lChoBkfAVvA3cYZVGWgHS1VoCEdAVD+LwWnCO3V9lChoBkfAUby6/Zdv9GgHS15oCEdAVEPeLvTgEXV9lChoBkfATNXUKArhBWgHS0xoCEdAVEicWj4593V9lChoBkfAQwriMo+fRWgHS3JoCEdAVEpGmUGFBnV9lChoBkfAU+YcYIjW1GgHS1toCEdAVEviFTNt7HV9lChoBkfAU9Bp5/smfGgHS0xoCEdAVEwJng5zYHV9lChoBkfAUu5FnZkCm2gHS3toCEdAVEyVqveP73V9lChoBkfAVLrsqrilzmgHS1BoCEdAVE8gW8AaN3V9lChoBkfAUH2fSQYDT2gHS2hoCEdAVFZIRRMviHV9lChoBkfARTfIZIg/1WgHS01oCEdAVFZucc2itnV9lChoBkfAUflGjKxLTWgHS2FoCEdAVFoAPuogm3V9lChoBkfARS72OAAhjmgHS5BoCEdAVFp4iX6ZY3V9lChoBkfAUI2/UONHY2gHS1loCEdAVFrT/hl183V9lChoBkfATSQkZ75VO2gHS01oCEdAVFuH/Lkjo3V9lChoBkfAT687p3X7L2gHS3toCEdAVFzkgfU4JnV9lChoBkfAa7J8YQ8OkWgHS3doCEdAVF1/nW8RMHV9lChoBkfAVMyRZEDyOWgHS2hoCEdAVF4K9f1Hv3V9lChoBkfAVolosZpBX2gHS31oCEdAVGFsBQvYe3V9lChoBkfAWQp0dRzij2gHS0poCEdAVGMEaESM+HV9lChoBkfAWywBhhH9WWgHS1hoCEdAVGf0TURWcXV9lChoBkfAXg761stTUGgHS2toCEdAVGn6xgRbr3VlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 28,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a5bda89aed440018fe2a4e16e09ff96aaa7dfe2e24b76b07f871cdea5c00399
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b08adc7f4061a2fed8c22dceca3a38057d401290d7604050448c1dc1c0a4574
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (175 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -13.361812499999996, "std_reward": 103.90564102034477, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-13T07:43:47.475445"}