Balajirv commited on
Commit
f21dc0b
·
1 Parent(s): 3b626a5

first trained RL model for LunarLander-v2 env

Browse files
LunerLanderPPO_v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f2df11031039f2465d309f98b3cba5669d4a4b39c33bffb8b7e03e34432a8e7
3
+ size 147424
LunerLanderPPO_v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
LunerLanderPPO_v1/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdd3ba78280>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdd3ba78310>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdd3ba783a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdd3ba78430>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fdd3ba784c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fdd3ba78550>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdd3ba785e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdd3ba78670>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fdd3ba78700>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdd3ba78790>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdd3ba78820>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdd3ba788b0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fdd3ba73840>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678022276640630782,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM07rzzDnRm6kF7auona6bXmRhC7lzQCOgAAgD8AAIA/zdoQvCksNrrzox48Gro6NOAXo7s9wk8zAACAPwAAgD9NbRK9ruG2uvCrTjqPOTw1m+m6OZjoa7kAAIA/AACAP6aUir3sgcu5kBVMupa4pbWwZyw7fqpvOQAAgD8AAIA/M+ewO6tA5T0zcYS9UGcLvrJNnLxwOkW8AAAAAAAAAACaqu+8xKTPPk4d0D3gKIq+gwQEPdih1j0AAAAAAAAAAG2lUT4PUsI+BRqevooCS76Muca8GC0OvQAAAAAAAAAAADIEPYUL67mbMFA6bYArNSM4BbtoQnK5AACAPwAAgD9muXy9eyKlupUBwDv+6mg4rUSoOT6FFbgAAIA/AACAP2Y8Rr3DaVO6FjKLO+4WazjVD+s54JbKuAAAgD8AAIA/JiHjvcPBfLpIQnw71WujtR+FwLrd2JC6AACAPwAAAAAAdi+8zzC0Ptgo4D0hFpW+PrFkPTilCL4AAAAAAAAAAM1iWb0FXtm7ww19verBJD1GvzU9ElgHvgAAgD8AAIA/A5GkvnQwaD8zONO+a3ycvqoVzb6p2Ee+AAAAAAAAAAAAMsg830hjPvX0Dj5HB2++D+TuPaIIUb0AAAAAAAAAAM2zobyP4jm6ON+UOEQGlzMmzvk6VkawtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkkCDTR1RZkCUhpRSlIwBbJRN6AOMAXSUR0CfcrueSSvDdX2UKGgGaAloD0MIX7adtsbqZ0CUhpRSlGgVTegDaBZHQJ92iF+NLlF1fZQoaAZoCWgPQwh5eM+B5aBhQJSGlFKUaBVN6ANoFkdAn3mM5CF9KHV9lChoBmgJaA9DCA/QfTkzY2dAlIaUUpRoFU3oA2gWR0CffjYdQwbmdX2UKGgGaAloD0MIkIXoELhiZ0CUhpRSlGgVTegDaBZHQJ9/rVOKwZB1fZQoaAZoCWgPQwgzwAXZsrRoQJSGlFKUaBVN6ANoFkdAn4SWV3Ux23V9lChoBmgJaA9DCH0G1JvRUmNAlIaUUpRoFU3oA2gWR0CfheVVxS5zdX2UKGgGaAloD0MIqvI9IxEJZUCUhpRSlGgVTegDaBZHQJ+NQqOLiuN1fZQoaAZoCWgPQwgUdlH0wE1nQJSGlFKUaBVN6ANoFkdAn43e8PFvRHV9lChoBmgJaA9DCCFzZVBtTGdAlIaUUpRoFU3oA2gWR0CfjnWtU4rCdX2UKGgGaAloD0MIjs75KQ5+Y0CUhpRSlGgVTegDaBZHQJ+wTZAY51h1fZQoaAZoCWgPQwinPSXnRFZkQJSGlFKUaBVN6ANoFkdAn7GPozN2T3V9lChoBmgJaA9DCP89eO3S0WdAlIaUUpRoFU3oA2gWR0Cfsvq2BreqdX2UKGgGaAloD0MIXTEjvL3vZECUhpRSlGgVTegDaBZHQJ+07G7z06J1fZQoaAZoCWgPQwhsPxnjQ9NhQJSGlFKUaBVN6ANoFkdAn7eKUaAFxHV9lChoBmgJaA9DCMfxQ6WRN2dAlIaUUpRoFU3oA2gWR0Cf0tdTYNAkdX2UKGgGaAloD0MI6V+SyhSOYkCUhpRSlGgVTegDaBZHQJ/XDLIPsiV1fZQoaAZoCWgPQwiIga59AVdfQJSGlFKUaBVN6ANoFkdAn9vVnh86WHV9lChoBmgJaA9DCHaNlgM9+WBAlIaUUpRoFU3oA2gWR0Cf3pcKPXCkdX2UKGgGaAloD0MI3qzB+6ooZUCUhpRSlGgVTegDaBZHQJ/i0M4LkS51fZQoaAZoCWgPQwhgsYaLXC1mQJSGlFKUaBVN6ANoFkdAn+QRqGlANXV9lChoBmgJaA9DCCibcoX3gmJAlIaUUpRoFU3oA2gWR0Cf6ETDfm9ydX2UKGgGaAloD0MIK4arA6ApZECUhpRSlGgVTegDaBZHQJ/pjZvkzXV1fZQoaAZoCWgPQwhJumbyzedgQJSGlFKUaBVN6ANoFkdAn/Cf3ai9I3V9lChoBmgJaA9DCOM48Gq5ZFtAlIaUUpRoFU3oA2gWR0Cf8S6pYLb6dX2UKGgGaAloD0MIuwz/6QayYUCUhpRSlGgVTegDaBZHQJ/xu0w8GLV1fZQoaAZoCWgPQwiHMlTF1AdlQJSGlFKUaBVN6ANoFkdAoAiwYP5HmXV9lChoBmgJaA9DCL6HS467WmdAlIaUUpRoFU3oA2gWR0CgCW/ZElVtdX2UKGgGaAloD0MIpp2ay404ZUCUhpRSlGgVTegDaBZHQKAKI0uUUwl1fZQoaAZoCWgPQwiDMLd7uU5lQJSGlFKUaBVN6ANoFkdAoArygqVhTnV9lChoBmgJaA9DCJMYBFYO/GZAlIaUUpRoFU3oA2gWR0CgDB101ZTydX2UKGgGaAloD0MIErwhjYopZkCUhpRSlGgVTegDaBZHQKAYvWBjFyd1fZQoaAZoCWgPQwiMKy6OyntkQJSGlFKUaBVN6ANoFkdAoBpHlyR0VHV9lChoBmgJaA9DCMrBbAIMpmVAlIaUUpRoFU3oA2gWR0CgHAfm1YyPdX2UKGgGaAloD0MIBoGVQwteYECUhpRSlGgVTegDaBZHQKAdiPxQSBd1fZQoaAZoCWgPQwg91SE3w4pmQJSGlFKUaBVN6ANoFkdAoCDSwnpjc3V9lChoBmgJaA9DCLHgfsADo2BAlIaUUpRoFU3oA2gWR0CgIenzH0btdX2UKGgGaAloD0MIpz/7kSIYXECUhpRSlGgVTegDaBZHQKAllipeeFt1fZQoaAZoCWgPQwghkEsc+T5hQJSGlFKUaBVN6ANoFkdAoCaorrgO0HV9lChoBmgJaA9DCCdO7neobGdAlIaUUpRoFU3oA2gWR0CgLJr7XQMQdX2UKGgGaAloD0MIV89J75ttYUCUhpRSlGgVTegDaBZHQKAtE7Dl5nl1fZQoaAZoCWgPQwgl6ZrJNytnQJSGlFKUaBVN6ANoFkdAoC2AddVvM3V9lChoBmgJaA9DCIKPwYrTDGJAlIaUUpRoFU3oA2gWR0CgO4sGPgejdX2UKGgGaAloD0MI0ZLH0/IiZECUhpRSlGgVTegDaBZHQKA8DJyQxN91fZQoaAZoCWgPQwhkJHuEGkRkQJSGlFKUaBVN6ANoFkdAoDyqvJRwZXV9lChoBmgJaA9DCPzFbMmqxWRAlIaUUpRoFU3oA2gWR0CgPYbwz+FUdX2UKGgGaAloD0MI+aI9XsikYECUhpRSlGgVTegDaBZHQKA+r3Fkxyp1fZQoaAZoCWgPQwhRTrSrEIBjQJSGlFKUaBVN6ANoFkdAoE2hqIrOJXV9lChoBmgJaA9DCN50yw7xL2FAlIaUUpRoFU3oA2gWR0CgT1WYv38GdX2UKGgGaAloD0MIR60wfS+3ZUCUhpRSlGgVTegDaBZHQKBRJZnL7oB1fZQoaAZoCWgPQwjlszwPbu1vQJSGlFKUaBVNawNoFkdAoFFJK3/gi3V9lChoBmgJaA9DCMOAJVcxk2dAlIaUUpRoFU3oA2gWR0CgUnj/lyR0dX2UKGgGaAloD0MIou4DkFp4YkCUhpRSlGgVTegDaBZHQKBUk72criF1fZQoaAZoCWgPQwjZQSWuY05hQJSGlFKUaBVN6ANoFkdAoFdD2HtWuHV9lChoBmgJaA9DCKchqvBnFGZAlIaUUpRoFU3oA2gWR0CgV+T+vQnhdX2UKGgGaAloD0MIGoums5NccUCUhpRSlGgVTfsCaBZHQKBZDZntfHB1fZQoaAZoCWgPQwjG+3H7ZQtkQJSGlFKUaBVN6ANoFkdAoFsom1IAfnV9lChoBmgJaA9DCA0dO6hEOmFAlIaUUpRoFU3oA2gWR0CgW2/EfkmydX2UKGgGaAloD0MI0UAsm7laZECUhpRSlGgVTegDaBZHQKBbtA+pwS91fZQoaAZoCWgPQwgSFhVxuvJlQJSGlFKUaBVN6ANoFkdAoGvjXYlIE3V9lChoBmgJaA9DCNDWwcHeSGdAlIaUUpRoFU3oA2gWR0CgbFj94u9OdX2UKGgGaAloD0MIMCqpE9BpYUCUhpRSlGgVTegDaBZHQKBtu99tuUF1fZQoaAZoCWgPQwjhRV9BmvlbQJSGlFKUaBVN6ANoFkdAoG8JzxPO6nV9lChoBmgJaA9DCPmf/N17cnBAlIaUUpRoFU2MAmgWR0Cgcct8E3bVdX2UKGgGaAloD0MIaObJNYW3bUCUhpRSlGgVTc4BaBZHQKB0Ic6vJRx1fZQoaAZoCWgPQwhZNJ2dDKxSQJSGlFKUaBVL0GgWR0CgdIWS+xnndX2UKGgGaAloD0MIsvLLYIyeX0CUhpRSlGgVTegDaBZHQKB6grcTJyR1fZQoaAZoCWgPQwiNgApHEPRoQJSGlFKUaBVN6ANoFkdAoHyHXkHUt3V9lChoBmgJaA9DCBLeHoSAp2ZAlIaUUpRoFU3oA2gWR0Cgfxp++dsjdX2UKGgGaAloD0MIPiR8728WaECUhpRSlGgVTegDaBZHQKCA5Mh5gPV1fZQoaAZoCWgPQwjwUuqS8T5pQJSGlFKUaBVN6ANoFkdAoIPg0Kqn33V9lChoBmgJaA9DCDvl0Y2wtWdAlIaUUpRoFU3oA2gWR0Cghv91loUSdX2UKGgGaAloD0MILCgMyjQvZECUhpRSlGgVTegDaBZHQKCHw7/4qPR1fZQoaAZoCWgPQwiM8zehkANxQJSGlFKUaBVNSgJoFkdAoIrem1pj+nV9lChoBmgJaA9DCABzLVoAnGRAlIaUUpRoFU3oA2gWR0Cgi8lUADJVdX2UKGgGaAloD0MItvepKjQNYECUhpRSlGgVTegDaBZHQKCMH06o2n91fZQoaAZoCWgPQwjvObAcocVwQJSGlFKUaBVNXwJoFkdAoIwgfyPMjnV9lChoBmgJaA9DCPG3PUFifl9AlIaUUpRoFU3oA2gWR0CgjG5Dqnm8dX2UKGgGaAloD0MIoiqm0k9RVECUhpRSlGgVS8xoFkdAoI6zzPKMenV9lChoBmgJaA9DCLfUQV4PvXFAlIaUUpRoFU3ZA2gWR0Cgj2tShrWRdX2UKGgGaAloD0MI09wKYbUdZ0CUhpRSlGgVTegDaBZHQKCb5jn3cpN1fZQoaAZoCWgPQwjWNVoOdCRkQJSGlFKUaBVN6ANoFkdAoJ/Tm+0w8HV9lChoBmgJaA9DCGPUtfa+jWNAlIaUUpRoFU3oA2gWR0Cgotd+gDigdX2UKGgGaAloD0MI0R+aebLWcUCUhpRSlGgVTXkBaBZHQKCoLcZ9/jN1fZQoaAZoCWgPQwglzR/T2mpsQJSGlFKUaBVN3QFoFkdAoKjKVpsXSHV9lChoBmgJaA9DCPpi78WX0mFAlIaUUpRoFU3oA2gWR0Cgq/RFqi48dX2UKGgGaAloD0MIcvikEwmacUCUhpRSlGgVTQ8BaBZHQKCsTx+az/p1fZQoaAZoCWgPQwioVl9dlQNkQJSGlFKUaBVN6ANoFkdAoK1PHaN+9nV9lChoBmgJaA9DCAouVtRge2BAlIaUUpRoFU3oA2gWR0CgrvisfaHsdX2UKGgGaAloD0MIs34zMV1JYUCUhpRSlGgVTegDaBZHQKCwGrNGEwp1fZQoaAZoCWgPQwgNwtzuZQlhQJSGlFKUaBVN6ANoFkdAoLIR2B8QZnV9lChoBmgJaA9DCA75ZwZxFWNAlIaUUpRoFU3oA2gWR0CgtUSaEzwddX2UKGgGaAloD0MIv9GOG36qcUCUhpRSlGgVTaoBaBZHQKC3Ux9oexR1fZQoaAZoCWgPQwiBQj19RAZwQJSGlFKUaBVNFANoFkdAoLhFnGsFMnV9lChoBmgJaA9DCNGt1/Qg6G1AlIaUUpRoFU3dAWgWR0CguNHCGetkdX2UKGgGaAloD0MIK6Im+vxFY0CUhpRSlGgVTegDaBZHQKC6GyXUpd91fZQoaAZoCWgPQwiallgZjWZcQJSGlFKUaBVN6ANoFkdAoLsNR1oxpXV9lChoBmgJaA9DCCZzLO+qCV9AlIaUUpRoFU3oA2gWR0Cgu2XLmp2mdX2UKGgGaAloD0MIHAsKgzJ7ZUCUhpRSlGgVTegDaBZHQKC7v4eLehx1fZQoaAZoCWgPQwhFEOfhBKxjQJSGlFKUaBVN6ANoFkdAoL5o9xIatXVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 252,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
LunerLanderPPO_v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b721d5920eb9d6cb43b7eb935ca17799325e9a263dd9d7db54ea84e891cc3b1a
3
+ size 87929
LunerLanderPPO_v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de4a3303acf781843c569eb9d6b0e597cc85574a6f43a00308b5e3b9cc3559b4
3
+ size 43393
LunerLanderPPO_v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
LunerLanderPPO_v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 266.24 +/- 20.93
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdd3ba78280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdd3ba78310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdd3ba783a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdd3ba78430>", "_build": "<function ActorCriticPolicy._build at 0x7fdd3ba784c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fdd3ba78550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdd3ba785e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdd3ba78670>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdd3ba78700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdd3ba78790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdd3ba78820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdd3ba788b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fdd3ba73840>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678022276640630782, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM07rzzDnRm6kF7auona6bXmRhC7lzQCOgAAgD8AAIA/zdoQvCksNrrzox48Gro6NOAXo7s9wk8zAACAPwAAgD9NbRK9ruG2uvCrTjqPOTw1m+m6OZjoa7kAAIA/AACAP6aUir3sgcu5kBVMupa4pbWwZyw7fqpvOQAAgD8AAIA/M+ewO6tA5T0zcYS9UGcLvrJNnLxwOkW8AAAAAAAAAACaqu+8xKTPPk4d0D3gKIq+gwQEPdih1j0AAAAAAAAAAG2lUT4PUsI+BRqevooCS76Muca8GC0OvQAAAAAAAAAAADIEPYUL67mbMFA6bYArNSM4BbtoQnK5AACAPwAAgD9muXy9eyKlupUBwDv+6mg4rUSoOT6FFbgAAIA/AACAP2Y8Rr3DaVO6FjKLO+4WazjVD+s54JbKuAAAgD8AAIA/JiHjvcPBfLpIQnw71WujtR+FwLrd2JC6AACAPwAAAAAAdi+8zzC0Ptgo4D0hFpW+PrFkPTilCL4AAAAAAAAAAM1iWb0FXtm7ww19verBJD1GvzU9ElgHvgAAgD8AAIA/A5GkvnQwaD8zONO+a3ycvqoVzb6p2Ee+AAAAAAAAAAAAMsg830hjPvX0Dj5HB2++D+TuPaIIUb0AAAAAAAAAAM2zobyP4jm6ON+UOEQGlzMmzvk6VkawtwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkkCDTR1RZkCUhpRSlIwBbJRN6AOMAXSUR0CfcrueSSvDdX2UKGgGaAloD0MIX7adtsbqZ0CUhpRSlGgVTegDaBZHQJ92iF+NLlF1fZQoaAZoCWgPQwh5eM+B5aBhQJSGlFKUaBVN6ANoFkdAn3mM5CF9KHV9lChoBmgJaA9DCA/QfTkzY2dAlIaUUpRoFU3oA2gWR0CffjYdQwbmdX2UKGgGaAloD0MIkIXoELhiZ0CUhpRSlGgVTegDaBZHQJ9/rVOKwZB1fZQoaAZoCWgPQwgzwAXZsrRoQJSGlFKUaBVN6ANoFkdAn4SWV3Ux23V9lChoBmgJaA9DCH0G1JvRUmNAlIaUUpRoFU3oA2gWR0CfheVVxS5zdX2UKGgGaAloD0MIqvI9IxEJZUCUhpRSlGgVTegDaBZHQJ+NQqOLiuN1fZQoaAZoCWgPQwgUdlH0wE1nQJSGlFKUaBVN6ANoFkdAn43e8PFvRHV9lChoBmgJaA9DCCFzZVBtTGdAlIaUUpRoFU3oA2gWR0CfjnWtU4rCdX2UKGgGaAloD0MIjs75KQ5+Y0CUhpRSlGgVTegDaBZHQJ+wTZAY51h1fZQoaAZoCWgPQwinPSXnRFZkQJSGlFKUaBVN6ANoFkdAn7GPozN2T3V9lChoBmgJaA9DCP89eO3S0WdAlIaUUpRoFU3oA2gWR0Cfsvq2BreqdX2UKGgGaAloD0MIXTEjvL3vZECUhpRSlGgVTegDaBZHQJ+07G7z06J1fZQoaAZoCWgPQwhsPxnjQ9NhQJSGlFKUaBVN6ANoFkdAn7eKUaAFxHV9lChoBmgJaA9DCMfxQ6WRN2dAlIaUUpRoFU3oA2gWR0Cf0tdTYNAkdX2UKGgGaAloD0MI6V+SyhSOYkCUhpRSlGgVTegDaBZHQJ/XDLIPsiV1fZQoaAZoCWgPQwiIga59AVdfQJSGlFKUaBVN6ANoFkdAn9vVnh86WHV9lChoBmgJaA9DCHaNlgM9+WBAlIaUUpRoFU3oA2gWR0Cf3pcKPXCkdX2UKGgGaAloD0MI3qzB+6ooZUCUhpRSlGgVTegDaBZHQJ/i0M4LkS51fZQoaAZoCWgPQwhgsYaLXC1mQJSGlFKUaBVN6ANoFkdAn+QRqGlANXV9lChoBmgJaA9DCCibcoX3gmJAlIaUUpRoFU3oA2gWR0Cf6ETDfm9ydX2UKGgGaAloD0MIK4arA6ApZECUhpRSlGgVTegDaBZHQJ/pjZvkzXV1fZQoaAZoCWgPQwhJumbyzedgQJSGlFKUaBVN6ANoFkdAn/Cf3ai9I3V9lChoBmgJaA9DCOM48Gq5ZFtAlIaUUpRoFU3oA2gWR0Cf8S6pYLb6dX2UKGgGaAloD0MIuwz/6QayYUCUhpRSlGgVTegDaBZHQJ/xu0w8GLV1fZQoaAZoCWgPQwiHMlTF1AdlQJSGlFKUaBVN6ANoFkdAoAiwYP5HmXV9lChoBmgJaA9DCL6HS467WmdAlIaUUpRoFU3oA2gWR0CgCW/ZElVtdX2UKGgGaAloD0MIpp2ay404ZUCUhpRSlGgVTegDaBZHQKAKI0uUUwl1fZQoaAZoCWgPQwiDMLd7uU5lQJSGlFKUaBVN6ANoFkdAoArygqVhTnV9lChoBmgJaA9DCJMYBFYO/GZAlIaUUpRoFU3oA2gWR0CgDB101ZTydX2UKGgGaAloD0MIErwhjYopZkCUhpRSlGgVTegDaBZHQKAYvWBjFyd1fZQoaAZoCWgPQwiMKy6OyntkQJSGlFKUaBVN6ANoFkdAoBpHlyR0VHV9lChoBmgJaA9DCMrBbAIMpmVAlIaUUpRoFU3oA2gWR0CgHAfm1YyPdX2UKGgGaAloD0MIBoGVQwteYECUhpRSlGgVTegDaBZHQKAdiPxQSBd1fZQoaAZoCWgPQwg91SE3w4pmQJSGlFKUaBVN6ANoFkdAoCDSwnpjc3V9lChoBmgJaA9DCLHgfsADo2BAlIaUUpRoFU3oA2gWR0CgIenzH0btdX2UKGgGaAloD0MIpz/7kSIYXECUhpRSlGgVTegDaBZHQKAllipeeFt1fZQoaAZoCWgPQwghkEsc+T5hQJSGlFKUaBVN6ANoFkdAoCaorrgO0HV9lChoBmgJaA9DCCdO7neobGdAlIaUUpRoFU3oA2gWR0CgLJr7XQMQdX2UKGgGaAloD0MIV89J75ttYUCUhpRSlGgVTegDaBZHQKAtE7Dl5nl1fZQoaAZoCWgPQwgl6ZrJNytnQJSGlFKUaBVN6ANoFkdAoC2AddVvM3V9lChoBmgJaA9DCIKPwYrTDGJAlIaUUpRoFU3oA2gWR0CgO4sGPgejdX2UKGgGaAloD0MI0ZLH0/IiZECUhpRSlGgVTegDaBZHQKA8DJyQxN91fZQoaAZoCWgPQwhkJHuEGkRkQJSGlFKUaBVN6ANoFkdAoDyqvJRwZXV9lChoBmgJaA9DCPzFbMmqxWRAlIaUUpRoFU3oA2gWR0CgPYbwz+FUdX2UKGgGaAloD0MI+aI9XsikYECUhpRSlGgVTegDaBZHQKA+r3Fkxyp1fZQoaAZoCWgPQwhRTrSrEIBjQJSGlFKUaBVN6ANoFkdAoE2hqIrOJXV9lChoBmgJaA9DCN50yw7xL2FAlIaUUpRoFU3oA2gWR0CgT1WYv38GdX2UKGgGaAloD0MIR60wfS+3ZUCUhpRSlGgVTegDaBZHQKBRJZnL7oB1fZQoaAZoCWgPQwjlszwPbu1vQJSGlFKUaBVNawNoFkdAoFFJK3/gi3V9lChoBmgJaA9DCMOAJVcxk2dAlIaUUpRoFU3oA2gWR0CgUnj/lyR0dX2UKGgGaAloD0MIou4DkFp4YkCUhpRSlGgVTegDaBZHQKBUk72criF1fZQoaAZoCWgPQwjZQSWuY05hQJSGlFKUaBVN6ANoFkdAoFdD2HtWuHV9lChoBmgJaA9DCKchqvBnFGZAlIaUUpRoFU3oA2gWR0CgV+T+vQnhdX2UKGgGaAloD0MIGoums5NccUCUhpRSlGgVTfsCaBZHQKBZDZntfHB1fZQoaAZoCWgPQwjG+3H7ZQtkQJSGlFKUaBVN6ANoFkdAoFsom1IAfnV9lChoBmgJaA9DCA0dO6hEOmFAlIaUUpRoFU3oA2gWR0CgW2/EfkmydX2UKGgGaAloD0MI0UAsm7laZECUhpRSlGgVTegDaBZHQKBbtA+pwS91fZQoaAZoCWgPQwgSFhVxuvJlQJSGlFKUaBVN6ANoFkdAoGvjXYlIE3V9lChoBmgJaA9DCNDWwcHeSGdAlIaUUpRoFU3oA2gWR0CgbFj94u9OdX2UKGgGaAloD0MIMCqpE9BpYUCUhpRSlGgVTegDaBZHQKBtu99tuUF1fZQoaAZoCWgPQwjhRV9BmvlbQJSGlFKUaBVN6ANoFkdAoG8JzxPO6nV9lChoBmgJaA9DCPmf/N17cnBAlIaUUpRoFU2MAmgWR0Cgcct8E3bVdX2UKGgGaAloD0MIaObJNYW3bUCUhpRSlGgVTc4BaBZHQKB0Ic6vJRx1fZQoaAZoCWgPQwhZNJ2dDKxSQJSGlFKUaBVL0GgWR0CgdIWS+xnndX2UKGgGaAloD0MIsvLLYIyeX0CUhpRSlGgVTegDaBZHQKB6grcTJyR1fZQoaAZoCWgPQwiNgApHEPRoQJSGlFKUaBVN6ANoFkdAoHyHXkHUt3V9lChoBmgJaA9DCBLeHoSAp2ZAlIaUUpRoFU3oA2gWR0Cgfxp++dsjdX2UKGgGaAloD0MIPiR8728WaECUhpRSlGgVTegDaBZHQKCA5Mh5gPV1fZQoaAZoCWgPQwjwUuqS8T5pQJSGlFKUaBVN6ANoFkdAoIPg0Kqn33V9lChoBmgJaA9DCDvl0Y2wtWdAlIaUUpRoFU3oA2gWR0Cghv91loUSdX2UKGgGaAloD0MILCgMyjQvZECUhpRSlGgVTegDaBZHQKCHw7/4qPR1fZQoaAZoCWgPQwiM8zehkANxQJSGlFKUaBVNSgJoFkdAoIrem1pj+nV9lChoBmgJaA9DCABzLVoAnGRAlIaUUpRoFU3oA2gWR0Cgi8lUADJVdX2UKGgGaAloD0MItvepKjQNYECUhpRSlGgVTegDaBZHQKCMH06o2n91fZQoaAZoCWgPQwjvObAcocVwQJSGlFKUaBVNXwJoFkdAoIwgfyPMjnV9lChoBmgJaA9DCPG3PUFifl9AlIaUUpRoFU3oA2gWR0CgjG5Dqnm8dX2UKGgGaAloD0MIoiqm0k9RVECUhpRSlGgVS8xoFkdAoI6zzPKMenV9lChoBmgJaA9DCLfUQV4PvXFAlIaUUpRoFU3ZA2gWR0Cgj2tShrWRdX2UKGgGaAloD0MI09wKYbUdZ0CUhpRSlGgVTegDaBZHQKCb5jn3cpN1fZQoaAZoCWgPQwjWNVoOdCRkQJSGlFKUaBVN6ANoFkdAoJ/Tm+0w8HV9lChoBmgJaA9DCGPUtfa+jWNAlIaUUpRoFU3oA2gWR0Cgotd+gDigdX2UKGgGaAloD0MI0R+aebLWcUCUhpRSlGgVTXkBaBZHQKCoLcZ9/jN1fZQoaAZoCWgPQwglzR/T2mpsQJSGlFKUaBVN3QFoFkdAoKjKVpsXSHV9lChoBmgJaA9DCPpi78WX0mFAlIaUUpRoFU3oA2gWR0Cgq/RFqi48dX2UKGgGaAloD0MIcvikEwmacUCUhpRSlGgVTQ8BaBZHQKCsTx+az/p1fZQoaAZoCWgPQwioVl9dlQNkQJSGlFKUaBVN6ANoFkdAoK1PHaN+9nV9lChoBmgJaA9DCAouVtRge2BAlIaUUpRoFU3oA2gWR0CgrvisfaHsdX2UKGgGaAloD0MIs34zMV1JYUCUhpRSlGgVTegDaBZHQKCwGrNGEwp1fZQoaAZoCWgPQwgNwtzuZQlhQJSGlFKUaBVN6ANoFkdAoLIR2B8QZnV9lChoBmgJaA9DCA75ZwZxFWNAlIaUUpRoFU3oA2gWR0CgtUSaEzwddX2UKGgGaAloD0MIv9GOG36qcUCUhpRSlGgVTaoBaBZHQKC3Ux9oexR1fZQoaAZoCWgPQwiBQj19RAZwQJSGlFKUaBVNFANoFkdAoLhFnGsFMnV9lChoBmgJaA9DCNGt1/Qg6G1AlIaUUpRoFU3dAWgWR0CguNHCGetkdX2UKGgGaAloD0MIK6Im+vxFY0CUhpRSlGgVTegDaBZHQKC6GyXUpd91fZQoaAZoCWgPQwiallgZjWZcQJSGlFKUaBVN6ANoFkdAoLsNR1oxpXV9lChoBmgJaA9DCCZzLO+qCV9AlIaUUpRoFU3oA2gWR0Cgu2XLmp2mdX2UKGgGaAloD0MIHAsKgzJ7ZUCUhpRSlGgVTegDaBZHQKC7v4eLehx1fZQoaAZoCWgPQwhFEOfhBKxjQJSGlFKUaBVN6ANoFkdAoL5o9xIatXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 252, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (257 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 266.24143792163716, "std_reward": 20.932117563984374, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-05T14:29:36.263974"}