Built with Axolotl

See axolotl config

axolotl version: 0.6.0

# git clone https://github.com/axolotl-ai-cloud/axolotl
# cd axolotl
# git checkout d425d5d3c3ca7644a9da8ed93c3d03f4be0c4854
# pip3 install packaging ninja huggingface_hub[cli]
# pip install "cut-cross-entropy[transformers] @ git+https://github.com/apple/ml-cross-entropy.git"
# pip3 install -e '.[flash-attn,deepspeed]'
# apt update && apt install libopenmpi-dev 
# pip install mpi4py
# huggingface-cli login --token $hf_key && wandb login $wandb_key
# python -m axolotl.cli.preprocess qwen-32b-story.yml
# medpace data analyst
# accelerate launch -m axolotl.cli.train qwen-32b-story.yml
# python -m axolotl.cli.merge_lora qwen-32b-story.yml
# huggingface-cli upload ToastyPigeon/new-ms-rp-test-v0-v3 train-workspace/merged . --exclude "*.md"

# git clone https://github.com/axolotl-ai-cloud/axolotl && cd axolotl && git checkout d8b4027200de0fe60f4ae0a71272c1a8cb2888f7 && pip3 install packaging ninja huggingface_hub[cli,hf_transfer] && pip3 install -e '.[flash-attn,deepspeed]' && cd .. && huggingface-cli login --token $hf_key && wandb login $wandb_key

# Model
base_model: Qwen/Qwen2.5-32B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: true
strict: false
bf16: true
fp16:
tf32: false
flash_attention: true
special_tokens:

# Output
output_dir: ./train-workspace
hub_model_id: ToastyPigeon/qwen32-story-ws-v2
hub_strategy: "checkpoint"
resume_from_checkpoint:
saves_per_epoch: 4

# Data
sequence_len: 4096 # fits
min_sample_len: 128
dataset_prepared_path: last_run_prepared
datasets:
  - path: ToastyPigeon/story-samples
    type: completion
    field: text
    split: train[:1500]
warmup_ratio: 0.05
shuffle_merged_datasets: true
sample_packing: true
#pad_to_sequence_len: true

# Batching
num_epochs: 1
gradient_accumulation_steps: 4
micro_batch_size: 1
eval_batch_size: 1

# Evaluation
val_set_size: 200
evals_per_epoch: 10
eval_table_size:
eval_max_new_tokens: 256
eval_sample_packing: true

save_safetensors: true

# WandB
wandb_project: Qwen-Test
#wandb_entity:

gradient_checkpointing: 'unsloth'
#gradient_checkpointing_kwargs:
#  use_reentrant: false

unsloth_cross_entropy_loss: true
#unsloth_lora_mlp: true
#unsloth_lora_qkv: true
#unsloth_lora_o: true

# LoRA
adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 32
lora_dropout: 0.5
lora_target_linear: 
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj
lora_modules_to_save:
#peft_layers_to_transform: [35,36,37,38,39]

# Optimizer
optimizer: paged_ademamix_8bit # adamw_8bit
lr_scheduler: cosine
learning_rate: 5e-5
cosine_min_lr_ratio: 0.5
weight_decay: 0.01
max_grad_norm: 1.0

# Misc
train_on_inputs: false
#group_by_length: true
early_stopping_patience:
local_rank:
logging_steps: 1
xformers_attention:
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json # previously blank
fsdp:
fsdp_config:

plugins:
  - axolotl.integrations.liger.LigerPlugin
#  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
#cut_cross_entropy: true
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true

gc_steps: 10
seed: 69

qwen32-story-ws-v2

This model is a fine-tuned version of Qwen/Qwen2.5-32B on the ToastyPigeon/story-samples dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2790

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 69
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.PAGED_ADEMAMIX_8BIT and the args are: No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
2.1763 0.0092 1 2.3021
2.129 0.1014 11 2.2997
2.2385 0.2028 22 2.2945
2.233 0.3041 33 2.2906
2.0907 0.4055 44 2.2874
2.2263 0.5069 55 2.2848
2.2703 0.6083 66 2.2828
2.4101 0.7097 77 2.2813
2.2473 0.8111 88 2.2800
2.1912 0.9124 99 2.2790

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for ToastyPigeon/qwen32-story-qlora

Base model

Qwen/Qwen2.5-32B
Adapter
(2)
this model
Merges
1 model