|
from simplet5 import SimpleT5 |
|
model = SimpleT5() |
|
|
|
model.load_model("t5","snrspeaks/t5-one-line-summary") |
|
|
|
abstract = """We describe a system called Overton, whose main design goal is to |
|
support engineers in building, monitoring, and improving production machine learning systems. |
|
Key challenges engineers face are monitoring fine-grained quality, diagnosing errors in |
|
sophisticated applications, and handling contradictory or incomplete supervision data. |
|
Overton automates the life cycle of model construction, deployment, and monitoring by providing a |
|
set of novel high-level, declarative abstractions. Overton's vision is to shift developers to |
|
these higher-level tasks instead of lower-level machine learning tasks. In fact, using Overton, |
|
engineers can build deep-learning-based applications without writing any code |
|
in frameworks like TensorFlow. For over a year, Overton has been used in production to support multiple |
|
applications in both near-real-time applications and back-of-house processing. |
|
In that time, Overton-based applications have answered billions of queries in multiple |
|
languages and processed trillions of records reducing errors 1.7-2.9 times versus production systems. |
|
""" |
|
|
|
model.predict(abstract) |
|
|