File size: 1,837 Bytes
60c6529
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from transformers import CLIPVisionConfig, FlaxCLIPVisionPreTrainedModel
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule
import jax.numpy as jnp
from flax import linen as nn
import jax
from transformers.modeling_flax_outputs import FlaxSequenceClassifierOutput


class FlaxCLIPForImageClassificationModule(nn.Module):
    config: CLIPVisionConfig
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.vit = FlaxCLIPVisionModule(config=self.config, dtype=self.dtype)
        self.classifier = nn.Dense(
            self.config.num_labels,
            dtype=self.dtype,
            kernel_init=jax.nn.initializers.variance_scaling(
                self.config.initializer_range ** 2, "fan_in", "truncated_normal"
            ),
        )

    def __call__(
            self,
            pixel_values=None,
            deterministic: bool = True,
            output_attentions=None,
            output_hidden_states=None,
            return_dict=None,
    ):
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.vit(
            pixel_values,
            deterministic=deterministic,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        logits = self.classifier(hidden_states[:, 0, :])

        if not return_dict:
            output = (logits,) + outputs[2:]
            return output

        return FlaxSequenceClassifierOutput(
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


class FlaxCLIPForImageClassification(FlaxCLIPVisionPreTrainedModel):
    module_class = FlaxCLIPForImageClassificationModule