File size: 2,518 Bytes
55dc60f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
library_name: peft
language:
- en
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mesolitica/IMDA-TTS
metrics:
- wer
model-index:
- name: Whisper Small NSC small (1000 steps) - Jarrett Er
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: NSC Small section
      type: mesolitica/IMDA-TTS
      config: default
      split: train
      args: 'config: en, split: train'
    metrics:
    - type: wer
      value: 3.123272526257601
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small NSC small (1000 steps) - Jarrett Er

This model is a fine-tuned version of [Thecoder3281f/whisper-small-hi-commonvoice17-1000](https://huggingface.co/Thecoder3281f/whisper-small-hi-commonvoice17-1000) on the NSC Small section dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0676
- Wer: 3.1233

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.0806        | 0.2941 | 100  | 0.0737          | 3.4549 |
| 0.0618        | 0.5882 | 200  | 0.0690          | 3.2062 |
| 0.0689        | 0.8824 | 300  | 0.0655          | 3.0265 |
| 0.0385        | 1.1765 | 400  | 0.0652          | 3.1509 |
| 0.0441        | 1.4706 | 500  | 0.0653          | 3.1647 |
| 0.0389        | 1.7647 | 600  | 0.0652          | 3.0404 |
| 0.032         | 2.0588 | 700  | 0.0646          | 3.1786 |
| 0.0264        | 2.3529 | 800  | 0.0672          | 3.1095 |
| 0.0307        | 2.6471 | 900  | 0.0672          | 3.1647 |
| 0.0266        | 2.9412 | 1000 | 0.0676          | 3.1233 |


### Framework versions

- PEFT 0.14.0
- Transformers 4.45.2
- Pytorch 2.5.1+cu124
- Datasets 3.2.1.dev0
- Tokenizers 0.20.3