--- base_model: TheBlueObserver/Llama-3.2-3B-Instruct-Unsloth-healthcare-recurv-recurv-huatuo-16bit-1epoch-merged library_name: transformers tags: - mlx --- # TheBlueObserver/Llama-3.2-3B-Instruct-Unsloth-healthcare-recurv-recurv-huatuo-16bit-1epoch-merged-MLX-196c8 The Model [TheBlueObserver/Llama-3.2-3B-Instruct-Unsloth-healthcare-recurv-recurv-huatuo-16bit-1epoch-merged-MLX-196c8](https://huggingface.co/TheBlueObserver/Llama-3.2-3B-Instruct-Unsloth-healthcare-recurv-recurv-huatuo-16bit-1epoch-merged-MLX-196c8) was converted to MLX format from [TheBlueObserver/Llama-3.2-3B-Instruct-Unsloth-healthcare-recurv-recurv-huatuo-16bit-1epoch-merged](https://huggingface.co/TheBlueObserver/Llama-3.2-3B-Instruct-Unsloth-healthcare-recurv-recurv-huatuo-16bit-1epoch-merged) using mlx-lm version **0.20.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("TheBlueObserver/Llama-3.2-3B-Instruct-Unsloth-healthcare-recurv-recurv-huatuo-16bit-1epoch-merged-MLX-196c8") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```