File size: 19,298 Bytes
843ec1e
 
 
3fa2d80
843ec1e
3fa2d80
71136e6
7eea830
 
 
 
 
3fa2d80
7eea830
 
71136e6
7eea830
 
71136e6
843ec1e
 
 
3fa2d80
 
 
843ec1e
3fa2d80
843ec1e
3fa2d80
843ec1e
3fa2d80
69a8d3b
3fa2d80
843ec1e
3fa2d80
69a8d3b
 
3fa2d80
69a8d3b
 
 
3fa2d80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
843ec1e
3fa2d80
843ec1e
 
 
3fa2d80
 
843ec1e
3fa2d80
 
 
 
 
 
 
843ec1e
3fa2d80
 
 
 
 
 
 
843ec1e
3fa2d80
 
 
843ec1e
3fa2d80
 
843ec1e
3fa2d80
843ec1e
3fa2d80
843ec1e
3fa2d80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7eea830
71136e6
 
7eea830
71136e6
7eea830
3fa2d80
7eea830
71136e6
7eea830
71136e6
 
 
 
 
 
 
 
 
7eea830
71136e6
3fa2d80
 
 
71136e6
 
3fa2d80
71136e6
69a8d3b
3fa2d80
843ec1e
69a8d3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
---
inference: false
license: other
model_type: llama
---

<!-- header start -->
<div style="width: 100%;">
    <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<!-- header end -->

# Tim Dettmers' Guanaco 7B GPTQ

These files are GPTQ model files for [Tim Dettmers' Guanaco 7B](https://huggingface.co/timdettmers/guanaco-7b).

Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.

These models were quantised using hardware kindly provided by [Latitude.sh](https://www.latitude.sh/accelerate).

## Repositories available

* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/guanaco-7B-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/guanaco-7B-GGML)
* [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/guanaco-7B-HF)

## Prompt template: Guanaco

```
### Human: {prompt}
### Assistant:
```

## Provided files

Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.

Each separate quant is in a different branch.  See below for instructions on fetching from different branches.

| Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
| ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
| main | 4 | 128 | False | 4.00 GB | True | GPTQ-for-LLaMa | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
| gptq-4bit-32g-actorder_True | 4 | 32 | True | 4.28 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
| gptq-4bit-64g-actorder_True | 4 | 64 | True | 4.02 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
| gptq-4bit-128g-actorder_True | 4 | 128 | True | 3.90 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
| gptq-8bit--1g-actorder_True | 8 | None | True | 7.01 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
| gptq-8bit-128g-actorder_False | 8 | 128 | False | 7.16 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
| gptq-8bit-128g-actorder_True | 8 | 128 | True | 7.16 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
| gptq-8bit-64g-actorder_True | 8 | 64 | True | 7.31 GB | False | AutoGPTQ | 8-bit, with group size 64g and Act Order for maximum inference quality. Poor AutoGPTQ CUDA speed. |

## How to download from branches

- In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/guanaco-7B-GPTQ:gptq-4bit-32g-actorder_True`
- With Git, you can clone a branch with:
```
git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/guanaco-7B-GPTQ`
```
- In Python Transformers code, the branch is the `revision` parameter; see below.

## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).

Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).

It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.

1. Click the **Model tab**.
2. Under **Download custom model or LoRA**, enter `TheBloke/guanaco-7B-GPTQ`.
  - To download from a specific branch, enter for example `TheBloke/guanaco-7B-GPTQ:gptq-4bit-32g-actorder_True`
  - see Provided Files above for the list of branches for each option.
3. Click **Download**.
4. The model will start downloading. Once it's finished it will say "Done"
5. In the top left, click the refresh icon next to **Model**.
6. In the **Model** dropdown, choose the model you just downloaded: `guanaco-7B-GPTQ`
7. The model will automatically load, and is now ready for use!
8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
  * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!

## How to use this GPTQ model from Python code

First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:

`GITHUB_ACTIONS=true pip install auto-gptq`

Then try the following example code:

```python
from transformers import AutoTokenizer, pipeline, logging
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig

model_name_or_path = "TheBloke/guanaco-7B-GPTQ"
model_basename = "Guanaco-7B-GPTQ-4bit-128g.no-act.order"

use_triton = False

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
        model_basename=model_basename
        use_safetensors=True,
        trust_remote_code=True,
        device="cuda:0",
        use_triton=use_triton,
        quantize_config=None)

"""
To download from a specific branch, use the revision parameter, as in this example:

model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
        revision="gptq-4bit-32g-actorder_True",
        model_basename=model_basename,
        use_safetensors=True,
        trust_remote_code=True,
        device="cuda:0",
        quantize_config=None)
"""

prompt = "Tell me about AI"
prompt_template=f'''### Human: {prompt}
### Assistant:
'''

print("\n\n*** Generate:")

input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
print(tokenizer.decode(output[0]))

# Inference can also be done using transformers' pipeline

# Prevent printing spurious transformers error when using pipeline with AutoGPTQ
logging.set_verbosity(logging.CRITICAL)

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    temperature=0.7,
    top_p=0.95,
    repetition_penalty=1.15
)

print(pipe(prompt_template)[0]['generated_text'])
```

## Compatibility

The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.

ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.

<!-- footer start -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/theblokeai)

## Thanks, and how to contribute.

Thanks to the [chirper.ai](https://chirper.ai) team!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Special thanks to**: Luke from CarbonQuill, Aemon Algiz.

**Patreon special mentions**: Space Cruiser, Nikolai Manek, Sam, Chris McCloskey, Rishabh Srivastava, Kalila, Spiking Neurons AB, Khalefa Al-Ahmad, WelcomeToTheClub, Chadd, Lone Striker, Viktor Bowallius, Edmond Seymore, Ai Maven, Chris Smitley, Dave, Alexandros Triantafyllidis, Luke @flexchar, Elle, ya boyyy, Talal Aujan, Alex , Jonathan Leane, Deep Realms, Randy H, subjectnull, Preetika Verma, Joseph William Delisle, Michael Levine, chris gileta, K, Oscar Rangel, LangChain4j, Trenton Dambrowitz, Eugene Pentland, Johann-Peter Hartmann, Femi Adebogun, Illia Dulskyi, senxiiz, Daniel P. Andersen, Sean Connelly, Artur Olbinski, RoA, Mano Prime, Derek Yates, Raven Klaugh, David Flickinger, Willem Michiel, Pieter, Willian Hasse, vamX, Luke Pendergrass, webtim, Ghost , Rainer Wilmers, Nathan LeClaire, Will Dee, Cory Kujawski, John Detwiler, Fred von Graf, biorpg, Iucharbius , Imad Khwaja, Pierre Kircher, terasurfer , Asp the Wyvern, John Villwock, theTransient, zynix , Gabriel Tamborski, Fen Risland, Gabriel Puliatti, Matthew Berman, Pyrater, SuperWojo, Stephen Murray, Karl Bernard, Ajan Kanaga, Greatston Gnanesh, Junyu Yang.

Thank you to all my generous patrons and donaters!

<!-- footer end -->

# Original model card: Tim Dettmers' Guanaco 7B

# Guanaco Models Based on LLaMA

| [Paper](https://arxiv.org/abs/2305.14314) | [Code](https://github.com/artidoro/qlora) | [Demo](https://huggingface.co/spaces/uwnlp/guanaco-playground-tgi) | 

**The Guanaco models are open-source finetuned chatbots obtained through 4-bit QLoRA tuning of LLaMA base models on the OASST1 dataset. They are available in 7B, 13B, 33B, and 65B parameter sizes.**

⚠️Guanaco is a model purely intended for research purposes and could produce problematic outputs.

## Why use Guanaco?
- **Competitive with commercial chatbot systems on the Vicuna and OpenAssistant benchmarks** (ChatGPT and BARD) according to human and GPT-4 raters. We note that the relative performance on tasks not covered in these benchmarks could be very different. In addition, commercial systems evolve over time (we used outputs from the March 2023 version of the models).
- **Available open-source for research purposes**. Guanaco models allow *cheap* and *local* experimentation with high-quality chatbot systems.
- **Replicable and efficient training procedure** that can be extended to new use cases. Guanaco training scripts are available in the [QLoRA repo](https://github.com/artidoro/qlora).
- **Rigorous comparison to 16-bit methods** (both 16-bit full-finetuning and LoRA) in [our paper](https://arxiv.org/abs/2305.14314) demonstrates the effectiveness of 4-bit QLoRA finetuning. 
- **Lightweight** checkpoints which only contain adapter weights.

## License and Intended Use
Guanaco adapter weights are available under Apache 2 license. Note the use of the Guanaco adapter weights, requires access to the LLaMA model weighs. 
Guanaco is based on LLaMA and therefore should be used according to the LLaMA license. 

## Usage
Here is an example of how you would load Guanaco 7B in 4-bits:
```python
import torch
from peft import PeftModel    
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

model_name = "huggyllama/llama-7b"
adapters_name = 'timdettmers/guanaco-7b'

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    load_in_4bit=True,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    max_memory= {i: '24000MB' for i in range(torch.cuda.device_count())},
    quantization_config=BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=torch.bfloat16,
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type='nf4'
    ),
)
model = PeftModel.from_pretrained(model, adapters_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

```
Inference can then be performed as usual with HF models as follows:
```python
prompt = "Introduce yourself"
formatted_prompt = (
    f"A chat between a curious human and an artificial intelligence assistant."
    f"The assistant gives helpful, detailed, and polite answers to the user's questions.\n"
    f"### Human: {prompt} ### Assistant:"
)
inputs = tokenizer(formatted_prompt, return_tensors="pt").to("cuda:0")
outputs = model.generate(inputs=inputs.input_ids, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
Expected output similar to the following:
```
A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
### Human: Introduce yourself ### Assistant: I am an artificial intelligence assistant. I am here to help you with any questions you may have.
```


## Current Inference Limitations 
Currently, 4-bit inference is slow. We recommend loading in 16 bits if inference speed is a concern. We are actively working on releasing efficient 4-bit inference kernels.

Below is how you would load the model in 16 bits:
```python
model_name = "huggyllama/llama-7b"
adapters_name = 'timdettmers/guanaco-7b'
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    max_memory= {i: '24000MB' for i in range(torch.cuda.device_count())},
)
model = PeftModel.from_pretrained(model, adapters_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

```


## Model Card
**Architecture**: The Guanaco models are LoRA adapters to be used on top of LLaMA models. They are added to all layers. For all model sizes, we use $r=64$.

**Base Model**: Guanaco uses LLaMA as base model with sizes 7B, 13B, 33B, 65B. LLaMA is a causal language model pretrained on a large corpus of text. See [LLaMA paper](https://arxiv.org/abs/2302.13971) for more details. Note that Guanaco can inherit biases and limitations of the base model.

**Finetuning Data**: Guanaco is finetuned on OASST1. The exact dataset is available at [timdettmers/openassistant-guanaco](https://huggingface.co/datasets/timdettmers/openassistant-guanaco).

**Languages**: The OASST1 dataset is multilingual (see [the paper](https://arxiv.org/abs/2304.07327) for details) and as such Guanaco responds to user queries in different languages. We note, however, that OASST1 is heavy in high-resource languages. In addition, human evaluation of Guanaco was only performed in English and based on qualitative analysis we observed degradation in performance in other languages. 

Next, we describe Training and Evaluation details.

### Training
Guanaco models are the result of 4-bit QLoRA supervised finetuning on the OASST1 dataset. 

All models use NormalFloat4 datatype for the base model and LoRA adapters on all linear layers with BFloat16 as computation datatype. We set LoRA $r=64$, $\alpha=16$. We also use Adam beta2 of 0.999, max grad norm of 0.3 and LoRA dropout of 0.1 for models up to 13B and 0.05 for 33B and 65B models.
For the finetuning process, we use constant learning rate schedule and paged AdamW optimizer. 

### Training hyperparameters
Size| Dataset | Batch Size | Learning Rate | Max Steps | Sequence length 
---|---|---|---|---|---
7B | OASST1      | 16 | 2e-4 | 1875 | 512
13B | OASST1     | 16 | 2e-4 | 1875 | 512
33B | OASST1     | 16 | 1e-4 | 1875 | 512
65B | OASST1     | 16 | 1e-4 | 1875 | 512

### Evaluation
We test generative language capabilities through both automated and human evaluations. This second set of evaluations relies on queries curated by humans and aims at measuring the quality of model responses. We use the Vicuna and OpenAssistant datasets with 80 and 953 prompts respectively. 

In both human and automated evaluations, for each prompt, raters compare all pairs of responses across the models considered. For human raters we randomize the order of the systems, for GPT-4 we evaluate with both orders.

  
Benchmark | Vicuna |  | Vicuna |   | OpenAssistant |   | -
-----------|----|-----|--------|---|---------------|---|---
Prompts    | 80 |     | 80     |   | 953           |   |
Judge | Human | | GPT-4 | | GPT-4 | |  
Model | Elo | Rank | Elo | Rank | Elo | Rank | **Median Rank** 
GPT-4 | 1176 | 1 | 1348 | 1 | 1294 | 1 | 1 
Guanaco-65B | 1023 | 2 | 1022 | 2 | 1008 | 3 | 2 
Guanaco-33B | 1009 | 4 | 992 | 3 | 1002 | 4 | 4 
ChatGPT-3.5 Turbo | 916 | 7 | 966 | 5 | 1015 | 2 | 5 
Vicuna-13B | 984 | 5 | 974 | 4 | 936 | 5 | 5 
Guanaco-13B | 975 | 6 | 913 | 6 | 885 | 6 | 6 
Guanaco-7B | 1010 | 3 | 879 | 8 | 860 | 7 | 7 
Bard | 909 | 8 | 902 | 7 | - | - | 8 


We also use the MMLU benchmark to measure performance on a range of language understanding tasks. This is a multiple-choice benchmark covering 57 tasks including elementary mathematics, US history, computer science, law, and more. We report 5-shot test accuracy.

 Dataset | 7B | 13B | 33B | 65B 
---|---|---|---|---
 LLaMA no tuning | 35.1 | 46.9 | 57.8 | 63.4 
 Self-Instruct | 36.4 | 33.3 | 53.0 | 56.7 
 Longform | 32.1 | 43.2 | 56.6 | 59.7 
 Chip2 | 34.5 | 41.6 | 53.6 | 59.8 
 HH-RLHF | 34.9 | 44.6 | 55.8 | 60.1 
 Unnatural Instruct | 41.9 | 48.1 | 57.3 | 61.3 
 OASST1 (Guanaco) | 36.6 | 46.4 | 57.0 | 62.2 
 Alpaca | 38.8 | 47.8 | 57.3 | 62.5 
 FLAN v2 | 44.5 | 51.4 | 59.2 | 63.9 

## Risks and Biases
The model can produce factually incorrect output, and should not be relied on to produce factually accurate information. The model was trained on various public datasets; it is possible that this model could generate lewd, biased, or otherwise offensive outputs.

However, we note that finetuning on OASST1 seems to reduce biases as measured on the CrowS dataset. We report here the performance of Guanaco-65B compared to other baseline models on the CrowS dataset.

|                      | LLaMA-65B | GPT-3 | OPT-175B | Guanaco-65B   |
|----------------------|-----------|-------|----------|---------------|
| Gender               | 70.6      | 62.6  | 65.7     | **47.5** |
| Religion             | {79.0}    | 73.3  | 68.6     | **38.7** |
| Race/Color           | 57.0      | 64.7  | 68.6     | **45.3** |
| Sexual orientation   | {81.0}    | 76.2  | 78.6     | **59.1** |
| Age                  | 70.1      | 64.4  | 67.8     | **36.3** |
| Nationality          | 64.2      | 61.6  | 62.9     | **32.4** |
| Disability           | 66.7      | 76.7  | 76.7     | **33.9** |
| Physical appearance  | 77.8      | 74.6  | 76.2     | **43.1** |
| Socioeconomic status | 71.5      | 73.8  | 76.2     | **55.3** |
| Average              | 66.6      | 67.2  | 69.5     | **43.5** |

## Citation

```bibtex
@article{dettmers2023qlora,
  title={QLoRA: Efficient Finetuning of Quantized LLMs},
  author={Dettmers, Tim and Pagnoni, Artidoro and Holtzman, Ari and Zettlemoyer, Luke},
  journal={arXiv preprint arXiv:2305.14314},
  year={2023}
}
```