TheBloke commited on
Commit
ae1f0e9
·
1 Parent(s): 38f46f7

Initial GPTQ model commit

Browse files
Files changed (1) hide show
  1. README.md +14 -13
README.md CHANGED
@@ -53,21 +53,22 @@ Each separate quant is in a different branch. See below for instructions on fet
53
 
54
  | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
55
  | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
56
- | main | 4 | 128 | False | 36.65 GB | True | AutoGPTQ | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
 
 
 
 
57
  | gptq-4bit-32g-actorder_True | 4 | 32 | True | 40.66 GB | True | AutoGPTQ | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
58
  | gptq-4bit-64g-actorder_True | 4 | 64 | True | 37.99 GB | True | AutoGPTQ | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
59
  | gptq-4bit-128g-actorder_True | 4 | 128 | True | 36.65 GB | True | AutoGPTQ | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
60
- | gptq-8bit--1g-actorder_True | 8 | None | True | Processing, coming soon | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
61
- | gptq-8bit-128g-actorder_False | 8 | 128 | False | Processing, coming soon | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
62
- | gptq-8bit-128g-actorder_True | 8 | 128 | True | Processing, coming soon | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
63
- | gptq-8bit-64g-actorder_True | 8 | 64 | True | Processing, coming soon | False | AutoGPTQ | 8-bit, with group size 64g and Act Order for maximum inference quality. Poor AutoGPTQ CUDA speed. |
64
 
65
  ## How to download from branches
66
 
67
- - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/airoboros-l2-70B-gpt4-1.4.1-GPTQ:gptq-4bit-32g-actorder_True`
68
  - With Git, you can clone a branch with:
69
  ```
70
- git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/airoboros-l2-70B-gpt4-1.4.1-GPTQ`
71
  ```
72
  - In Python Transformers code, the branch is the `revision` parameter; see below.
73
 
@@ -79,7 +80,7 @@ It is strongly recommended to use the text-generation-webui one-click-installers
79
 
80
  1. Click the **Model tab**.
81
  2. Under **Download custom model or LoRA**, enter `TheBloke/airoboros-l2-70B-gpt4-1.4.1-GPTQ`.
82
- - To download from a specific branch, enter for example `TheBloke/airoboros-l2-70B-gpt4-1.4.1-GPTQ:gptq-4bit-32g-actorder_True`
83
  - see Provided Files above for the list of branches for each option.
84
  3. Click **Download**.
85
  4. The model will start downloading. Once it's finished it will say "Done"
@@ -103,7 +104,7 @@ from transformers import AutoTokenizer, pipeline, logging
103
  from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
104
 
105
  model_name_or_path = "TheBloke/airoboros-l2-70B-gpt4-1.4.1-GPTQ"
106
- model_basename = "gptq_model-4bit-128g"
107
 
108
  use_triton = False
109
 
@@ -121,7 +122,7 @@ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
121
  To download from a specific branch, use the revision parameter, as in this example:
122
 
123
  model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
124
- revision="gptq-4bit-32g-actorder_True",
125
  model_basename=model_basename,
126
  use_safetensors=True,
127
  trust_remote_code=False,
@@ -198,10 +199,10 @@ Thank you to all my generous patrons and donaters!
198
 
199
  ### Overview
200
 
201
- Llama 2 version of https://huggingface.co/jondurbin/airoboros-70b-gpt4-1.4.1-qlora
202
-
203
- See that model card for all the details.
204
 
 
 
205
 
206
  ### Licence and usage restrictions
207
 
 
53
 
54
  | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
55
  | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
56
+ | main | 4 | None | True | 35.33 GB | True | AutoGPTQ | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
57
+ | gptq-3bit--1g-actorder_True | 3 | None | True | 26.78 GB | False | AutoGPTQ | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
58
+ | gptq-3bit-128g-actorder_False | 3 | 128 | False | 28.03 GB | False | AutoGPTQ | 3-bit, with group size 128g but no act-order. Slightly higher VRAM requirements than 3-bit None. |
59
+ | gptq-3bit-128g-actorder_True | 3 | 128 | True | 28.03 GB | False | AutoGPTQ | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
60
+ | gptq-3bit-64g-actorder_True | 3 | 64 | True | 29.30 GB | False | AutoGPTQ | 3-bit, with group size 64g and act-order. Highest quality 3-bit option. Poor AutoGPTQ CUDA speed. |
61
  | gptq-4bit-32g-actorder_True | 4 | 32 | True | 40.66 GB | True | AutoGPTQ | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
62
  | gptq-4bit-64g-actorder_True | 4 | 64 | True | 37.99 GB | True | AutoGPTQ | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
63
  | gptq-4bit-128g-actorder_True | 4 | 128 | True | 36.65 GB | True | AutoGPTQ | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
64
+ | gptq-4bit-128g-actorder_False | 4 | 128 | False | 36.65 GB | True | AutoGPTQ | 4-bit, without Act Order and group size 128g. |
 
 
 
65
 
66
  ## How to download from branches
67
 
68
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/airoboros-l2-70B-gpt4-1.4.1-GPTQ:gptq-3bit--1g-actorder_True`
69
  - With Git, you can clone a branch with:
70
  ```
71
+ git clone --branch gptq-3bit--1g-actorder_True https://huggingface.co/TheBloke/airoboros-l2-70B-gpt4-1.4.1-GPTQ`
72
  ```
73
  - In Python Transformers code, the branch is the `revision` parameter; see below.
74
 
 
80
 
81
  1. Click the **Model tab**.
82
  2. Under **Download custom model or LoRA**, enter `TheBloke/airoboros-l2-70B-gpt4-1.4.1-GPTQ`.
83
+ - To download from a specific branch, enter for example `TheBloke/airoboros-l2-70B-gpt4-1.4.1-GPTQ:gptq-3bit--1g-actorder_True`
84
  - see Provided Files above for the list of branches for each option.
85
  3. Click **Download**.
86
  4. The model will start downloading. Once it's finished it will say "Done"
 
104
  from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
105
 
106
  model_name_or_path = "TheBloke/airoboros-l2-70B-gpt4-1.4.1-GPTQ"
107
+ model_basename = "gptq_model-4bit--1g"
108
 
109
  use_triton = False
110
 
 
122
  To download from a specific branch, use the revision parameter, as in this example:
123
 
124
  model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
125
+ revision="gptq-3bit--1g-actorder_True",
126
  model_basename=model_basename,
127
  use_safetensors=True,
128
  trust_remote_code=False,
 
199
 
200
  ### Overview
201
 
202
+ Llama 2 70b fine tune using https://huggingface.co/datasets/jondurbin/airoboros-gpt4-1.4.1
 
 
203
 
204
+ See the previous llama 65b model card for info:
205
+ https://hf.co/jondurbin/airoboros-65b-gpt4-1.4
206
 
207
  ### Licence and usage restrictions
208