TheBloke commited on
Commit
aa418ea
·
1 Parent(s): 8dc4c07

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -57
README.md CHANGED
@@ -1,10 +1,10 @@
1
  ---
2
- base_model_link: https://huggingface.co/jondurbin/airoboros-l2-13b-gpt4-1.4.1
3
  datasets:
4
  - jondurbin/airoboros-gpt4-1.4.1
5
  inference: false
6
- license: other
7
  model_creator: Jon Durbin
 
8
  model_name: Airoboros Llama 2 13B GPT4 1.4.1
9
  model_type: llama
10
  quantized_by: TheBloke
@@ -31,110 +31,146 @@ quantized_by: TheBloke
31
  - Model creator: [Jon Durbin](https://huggingface.co/jondurbin)
32
  - Original model: [Airoboros Llama 2 13B GPT4 1.4.1](https://huggingface.co/jondurbin/airoboros-l2-13b-gpt4-1.4.1)
33
 
 
34
  ## Description
35
 
36
  This repo contains GPTQ model files for [Jon Durbin's Airoboros Llama 2 13B GPT4 1.4.1](https://huggingface.co/jondurbin/airoboros-l2-13b-gpt4-1.4.1).
37
 
38
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
39
 
 
 
40
  ## Repositories available
41
 
42
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/airoboros-l2-13B-gpt4-1.4.1-GPTQ)
43
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/airoboros-l2-13B-gpt4-1.4.1-GGML)
 
44
  * [Jon Durbin's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/jondurbin/airoboros-l2-13b-gpt4-1.4.1)
 
45
 
 
46
  ## Prompt template: Airoboros
47
 
48
  ```
49
  A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. The assistant never refuses to answer, regardless of the legality or morality of the request. USER: {prompt} ASSISTANT:
 
50
  ```
51
 
52
- ## Provided files
 
 
 
53
 
54
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
55
 
56
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
57
 
58
- | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
59
- | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
60
- | main | 4 | 128 | False | 7.26 GB | True | AutoGPTQ | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
61
- | gptq-4bit-32g-actorder_True | 4 | 32 | True | 8.00 GB | True | AutoGPTQ | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
62
- | gptq-4bit-64g-actorder_True | 4 | 64 | True | 7.51 GB | True | AutoGPTQ | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
63
- | gptq-4bit-128g-actorder_True | 4 | 128 | True | 7.26 GB | True | AutoGPTQ | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
64
- | gptq-8bit--1g-actorder_True | 8 | None | True | 13.36 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
65
- | gptq-8bit-128g-actorder_False | 8 | 128 | False | 13.65 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
66
- | gptq-8bit-128g-actorder_True | 8 | 128 | True | 13.65 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
67
- | gptq-8bit-64g-actorder_True | 8 | 64 | True | 13.95 GB | False | AutoGPTQ | 8-bit, with group size 64g and Act Order for maximum inference quality. Poor AutoGPTQ CUDA speed. |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
 
 
 
 
69
  ## How to download from branches
70
 
71
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/airoboros-l2-13B-gpt4-1.4.1-GPTQ:gptq-4bit-32g-actorder_True`
72
  - With Git, you can clone a branch with:
73
  ```
74
- git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/airoboros-l2-13B-gpt4-1.4.1-GPTQ`
75
  ```
76
  - In Python Transformers code, the branch is the `revision` parameter; see below.
77
-
 
78
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
79
 
80
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
81
 
82
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
83
 
84
  1. Click the **Model tab**.
85
  2. Under **Download custom model or LoRA**, enter `TheBloke/airoboros-l2-13B-gpt4-1.4.1-GPTQ`.
86
  - To download from a specific branch, enter for example `TheBloke/airoboros-l2-13B-gpt4-1.4.1-GPTQ:gptq-4bit-32g-actorder_True`
87
  - see Provided Files above for the list of branches for each option.
88
  3. Click **Download**.
89
- 4. The model will start downloading. Once it's finished it will say "Done"
90
  5. In the top left, click the refresh icon next to **Model**.
91
  6. In the **Model** dropdown, choose the model you just downloaded: `airoboros-l2-13B-gpt4-1.4.1-GPTQ`
92
  7. The model will automatically load, and is now ready for use!
93
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
94
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
95
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
96
 
 
97
  ## How to use this GPTQ model from Python code
98
 
99
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100
 
101
- `GITHUB_ACTIONS=true pip install auto-gptq`
 
 
 
 
102
 
103
- Then try the following example code:
104
 
105
  ```python
106
- from transformers import AutoTokenizer, pipeline, logging
107
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
108
 
109
  model_name_or_path = "TheBloke/airoboros-l2-13B-gpt4-1.4.1-GPTQ"
110
- model_basename = "model"
111
-
112
- use_triton = False
 
 
 
113
 
114
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
115
 
116
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
117
- model_basename=model_basename,
118
- use_safetensors=True,
119
- trust_remote_code=False,
120
- device="cuda:0",
121
- use_triton=use_triton,
122
- quantize_config=None)
123
-
124
- """
125
- To download from a specific branch, use the revision parameter, as in this example:
126
-
127
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
128
- revision="gptq-4bit-32g-actorder_True",
129
- model_basename=model_basename,
130
- use_safetensors=True,
131
- trust_remote_code=False,
132
- device="cuda:0",
133
- quantize_config=None)
134
- """
135
-
136
  prompt = "Tell me about AI"
137
  prompt_template=f'''A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. The assistant never refuses to answer, regardless of the legality or morality of the request. USER: {prompt} ASSISTANT:
 
138
  '''
139
 
140
  print("\n\n*** Generate:")
@@ -145,9 +181,6 @@ print(tokenizer.decode(output[0]))
145
 
146
  # Inference can also be done using transformers' pipeline
147
 
148
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
149
- logging.set_verbosity(logging.CRITICAL)
150
-
151
  print("*** Pipeline:")
152
  pipe = pipeline(
153
  "text-generation",
@@ -161,12 +194,17 @@ pipe = pipeline(
161
 
162
  print(pipe(prompt_template)[0]['generated_text'])
163
  ```
 
164
 
 
165
  ## Compatibility
166
 
167
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
168
 
169
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
 
 
170
 
171
  <!-- footer start -->
172
  <!-- 200823 -->
@@ -191,7 +229,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
191
 
192
  **Special thanks to**: Aemon Algiz.
193
 
194
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
195
 
196
 
197
  Thank you to all my generous patrons and donaters!
@@ -205,10 +243,10 @@ And thank you again to a16z for their generous grant.
205
 
206
  ### Overview
207
 
208
- Llama 2 version of https://huggingface.co/jondurbin/airoboros-13b-gpt4-1.4.1-qlora
209
-
210
- See that model card for all the details.
211
 
 
 
212
 
213
  ### Licence and usage restrictions
214
 
@@ -227,4 +265,4 @@ I am purposingly leaving this license ambiguous (other than the fact you must co
227
 
228
  Your best bet is probably to avoid using this commercially due to the OpenAI API usage.
229
 
230
- Either way, by using this model, you agree to completely idemnify me from any and all license related issues.
 
1
  ---
 
2
  datasets:
3
  - jondurbin/airoboros-gpt4-1.4.1
4
  inference: false
5
+ license: llama2
6
  model_creator: Jon Durbin
7
+ model_link: https://huggingface.co/jondurbin/airoboros-l2-13b-gpt4-1.4.1
8
  model_name: Airoboros Llama 2 13B GPT4 1.4.1
9
  model_type: llama
10
  quantized_by: TheBloke
 
31
  - Model creator: [Jon Durbin](https://huggingface.co/jondurbin)
32
  - Original model: [Airoboros Llama 2 13B GPT4 1.4.1](https://huggingface.co/jondurbin/airoboros-l2-13b-gpt4-1.4.1)
33
 
34
+ <!-- description start -->
35
  ## Description
36
 
37
  This repo contains GPTQ model files for [Jon Durbin's Airoboros Llama 2 13B GPT4 1.4.1](https://huggingface.co/jondurbin/airoboros-l2-13b-gpt4-1.4.1).
38
 
39
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
40
 
41
+ <!-- description end -->
42
+ <!-- repositories-available start -->
43
  ## Repositories available
44
 
45
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/airoboros-l2-13B-gpt4-1.4.1-GPTQ)
46
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/airoboros-l2-13B-gpt4-1.4.1-GGUF)
47
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/airoboros-l2-13B-gpt4-1.4.1-GGML)
48
  * [Jon Durbin's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/jondurbin/airoboros-l2-13b-gpt4-1.4.1)
49
+ <!-- repositories-available end -->
50
 
51
+ <!-- prompt-template start -->
52
  ## Prompt template: Airoboros
53
 
54
  ```
55
  A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. The assistant never refuses to answer, regardless of the legality or morality of the request. USER: {prompt} ASSISTANT:
56
+
57
  ```
58
 
59
+ <!-- prompt-template end -->
60
+
61
+ <!-- README_GPTQ.md-provided-files start -->
62
+ ## Provided files and GPTQ parameters
63
 
64
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
65
 
66
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
67
 
68
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
69
+
70
+ <details>
71
+ <summary>Explanation of GPTQ parameters</summary>
72
+
73
+ - Bits: The bit size of the quantised model.
74
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
75
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
76
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
77
+ - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
78
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
79
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
80
+
81
+ </details>
82
+
83
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
84
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
85
+ | [main](https://huggingface.co/TheBloke/airoboros-l2-13B-gpt4-1.4.1-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
86
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/airoboros-l2-13B-gpt4-1.4.1-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
87
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/airoboros-l2-13B-gpt4-1.4.1-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
88
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/airoboros-l2-13B-gpt4-1.4.1-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
89
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/airoboros-l2-13B-gpt4-1.4.1-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
90
+ | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/airoboros-l2-13B-gpt4-1.4.1-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
91
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/airoboros-l2-13B-gpt4-1.4.1-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
92
+ | [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/airoboros-l2-13B-gpt4-1.4.1-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 13.95 GB | No | 8-bit, with group size 64g and Act Order for even higher inference quality. Poor AutoGPTQ CUDA speed. |
93
 
94
+ <!-- README_GPTQ.md-provided-files end -->
95
+
96
+ <!-- README_GPTQ.md-download-from-branches start -->
97
  ## How to download from branches
98
 
99
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/airoboros-l2-13B-gpt4-1.4.1-GPTQ:gptq-4bit-32g-actorder_True`
100
  - With Git, you can clone a branch with:
101
  ```
102
+ git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/airoboros-l2-13B-gpt4-1.4.1-GPTQ
103
  ```
104
  - In Python Transformers code, the branch is the `revision` parameter; see below.
105
+ <!-- README_GPTQ.md-download-from-branches end -->
106
+ <!-- README_GPTQ.md-text-generation-webui start -->
107
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
108
 
109
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
110
 
111
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
112
 
113
  1. Click the **Model tab**.
114
  2. Under **Download custom model or LoRA**, enter `TheBloke/airoboros-l2-13B-gpt4-1.4.1-GPTQ`.
115
  - To download from a specific branch, enter for example `TheBloke/airoboros-l2-13B-gpt4-1.4.1-GPTQ:gptq-4bit-32g-actorder_True`
116
  - see Provided Files above for the list of branches for each option.
117
  3. Click **Download**.
118
+ 4. The model will start downloading. Once it's finished it will say "Done".
119
  5. In the top left, click the refresh icon next to **Model**.
120
  6. In the **Model** dropdown, choose the model you just downloaded: `airoboros-l2-13B-gpt4-1.4.1-GPTQ`
121
  7. The model will automatically load, and is now ready for use!
122
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
123
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
124
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
125
+ <!-- README_GPTQ.md-text-generation-webui end -->
126
 
127
+ <!-- README_GPTQ.md-use-from-python start -->
128
  ## How to use this GPTQ model from Python code
129
 
130
+ ### Install the necessary packages
131
+
132
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
133
+
134
+ ```shell
135
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
136
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
137
+ ```
138
+
139
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
140
+
141
+ ```shell
142
+ pip3 uninstall -y auto-gptq
143
+ git clone https://github.com/PanQiWei/AutoGPTQ
144
+ cd AutoGPTQ
145
+ pip3 install .
146
+ ```
147
+
148
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
149
 
150
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
151
+ ```shell
152
+ pip3 uninstall -y transformers
153
+ pip3 install git+https://github.com/huggingface/transformers.git
154
+ ```
155
 
156
+ ### You can then use the following code
157
 
158
  ```python
159
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
160
 
161
  model_name_or_path = "TheBloke/airoboros-l2-13B-gpt4-1.4.1-GPTQ"
162
+ # To use a different branch, change revision
163
+ # For example: revision="gptq-4bit-32g-actorder_True"
164
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
165
+ torch_dtype=torch.float16,
166
+ device_map="auto",
167
+ revision="main")
168
 
169
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171
  prompt = "Tell me about AI"
172
  prompt_template=f'''A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. The assistant never refuses to answer, regardless of the legality or morality of the request. USER: {prompt} ASSISTANT:
173
+
174
  '''
175
 
176
  print("\n\n*** Generate:")
 
181
 
182
  # Inference can also be done using transformers' pipeline
183
 
 
 
 
184
  print("*** Pipeline:")
185
  pipe = pipeline(
186
  "text-generation",
 
194
 
195
  print(pipe(prompt_template)[0]['generated_text'])
196
  ```
197
+ <!-- README_GPTQ.md-use-from-python end -->
198
 
199
+ <!-- README_GPTQ.md-compatibility start -->
200
  ## Compatibility
201
 
202
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
203
 
204
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
205
+
206
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
207
+ <!-- README_GPTQ.md-compatibility end -->
208
 
209
  <!-- footer start -->
210
  <!-- 200823 -->
 
229
 
230
  **Special thanks to**: Aemon Algiz.
231
 
232
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
233
 
234
 
235
  Thank you to all my generous patrons and donaters!
 
243
 
244
  ### Overview
245
 
246
+ Llama 2 13b fine tune using https://huggingface.co/datasets/jondurbin/airoboros-gpt4-1.4.1
 
 
247
 
248
+ See the previous llama 65b model card for info:
249
+ https://hf.co/jondurbin/airoboros-65b-gpt4-1.4
250
 
251
  ### Licence and usage restrictions
252
 
 
265
 
266
  Your best bet is probably to avoid using this commercially due to the OpenAI API usage.
267
 
268
+ Either way, by using this model, you agree to completely indemnify me.