Update README.md
Browse files
README.md
CHANGED
@@ -6951,7 +6951,7 @@ model-index:
|
|
6951 |
- type: precision_at_3
|
6952 |
value: 18.099999999999998
|
6953 |
- type: precision_at_5
|
6954 |
-
value: 15
|
6955 |
- type: precision_at_10
|
6956 |
value: 10.48
|
6957 |
- type: precision_at_20
|
@@ -7763,7 +7763,7 @@ model-index:
|
|
7763 |
type: mteb/scifact
|
7764 |
metrics:
|
7765 |
- type: ndcg_at_1
|
7766 |
-
value: 61
|
7767 |
- type: ndcg_at_3
|
7768 |
value: 67.589
|
7769 |
- type: ndcg_at_5
|
@@ -7805,7 +7805,7 @@ model-index:
|
|
7805 |
- type: recall_at_1000
|
7806 |
value: 99.667
|
7807 |
- type: precision_at_1
|
7808 |
-
value: 61
|
7809 |
- type: precision_at_3
|
7810 |
value: 26.111
|
7811 |
- type: precision_at_5
|
@@ -7819,7 +7819,7 @@ model-index:
|
|
7819 |
- type: precision_at_1000
|
7820 |
value: 0.11299999999999999
|
7821 |
- type: mrr_at_1
|
7822 |
-
value: 61
|
7823 |
- type: mrr_at_3
|
7824 |
value: 67.4444
|
7825 |
- type: mrr_at_5
|
@@ -7953,7 +7953,7 @@ model-index:
|
|
7953 |
- type: nauc_recall_at_100_diff1
|
7954 |
value: 65.733
|
7955 |
- type: nauc_recall_at_1000_max
|
7956 |
-
value: 100
|
7957 |
- type: nauc_recall_at_1000_std
|
7958 |
value: 72.2222
|
7959 |
- type: nauc_recall_at_1000_diff1
|
@@ -8225,7 +8225,7 @@ model-index:
|
|
8225 |
type: mteb/trec-covid
|
8226 |
metrics:
|
8227 |
- type: ndcg_at_1
|
8228 |
-
value: 85
|
8229 |
- type: ndcg_at_3
|
8230 |
value: 84.58099999999999
|
8231 |
- type: ndcg_at_5
|
@@ -8267,7 +8267,7 @@ model-index:
|
|
8267 |
- type: recall_at_1000
|
8268 |
value: 53.516
|
8269 |
- type: precision_at_1
|
8270 |
-
value: 90
|
8271 |
- type: precision_at_3
|
8272 |
value: 89.333
|
8273 |
- type: precision_at_5
|
@@ -8281,7 +8281,7 @@ model-index:
|
|
8281 |
- type: precision_at_1000
|
8282 |
value: 25.380000000000003
|
8283 |
- type: mrr_at_1
|
8284 |
-
value: 90
|
8285 |
- type: mrr_at_3
|
8286 |
value: 94.6667
|
8287 |
- type: mrr_at_5
|
@@ -9036,16 +9036,12 @@ model-index:
|
|
9036 |
type: PairClassification
|
9037 |
pipeline_tag: sentence-similarity
|
9038 |
tags:
|
9039 |
-
- sentence-transformers
|
9040 |
- feature-extraction
|
9041 |
-
- sentence-similarity
|
9042 |
- mteb
|
9043 |
- arctic
|
9044 |
- snowflake-arctic-embed
|
9045 |
-
- transformers.js
|
9046 |
- onnx
|
9047 |
- teradata
|
9048 |
-
|
9049 |
---
|
9050 |
# A Teradata Vantage compatible Embeddings Model
|
9051 |
|
@@ -9197,5 +9193,4 @@ print("Cosine similiarity for embeddings calculated with ONNX:" + str(cos_sim(em
|
|
9197 |
print("Cosine similiarity for embeddings calculated with SentenceTransformer:" + str(cos_sim(embeddings_1_sentence_transformer, embeddings_2_sentence_transformer)))
|
9198 |
```
|
9199 |
|
9200 |
-
You can find the detailed ONNX vs. SentenceTransformer result comparison steps in the file [test_local.py](./test_local.py)
|
9201 |
-
|
|
|
6951 |
- type: precision_at_3
|
6952 |
value: 18.099999999999998
|
6953 |
- type: precision_at_5
|
6954 |
+
value: 15
|
6955 |
- type: precision_at_10
|
6956 |
value: 10.48
|
6957 |
- type: precision_at_20
|
|
|
7763 |
type: mteb/scifact
|
7764 |
metrics:
|
7765 |
- type: ndcg_at_1
|
7766 |
+
value: 61
|
7767 |
- type: ndcg_at_3
|
7768 |
value: 67.589
|
7769 |
- type: ndcg_at_5
|
|
|
7805 |
- type: recall_at_1000
|
7806 |
value: 99.667
|
7807 |
- type: precision_at_1
|
7808 |
+
value: 61
|
7809 |
- type: precision_at_3
|
7810 |
value: 26.111
|
7811 |
- type: precision_at_5
|
|
|
7819 |
- type: precision_at_1000
|
7820 |
value: 0.11299999999999999
|
7821 |
- type: mrr_at_1
|
7822 |
+
value: 61
|
7823 |
- type: mrr_at_3
|
7824 |
value: 67.4444
|
7825 |
- type: mrr_at_5
|
|
|
7953 |
- type: nauc_recall_at_100_diff1
|
7954 |
value: 65.733
|
7955 |
- type: nauc_recall_at_1000_max
|
7956 |
+
value: 100
|
7957 |
- type: nauc_recall_at_1000_std
|
7958 |
value: 72.2222
|
7959 |
- type: nauc_recall_at_1000_diff1
|
|
|
8225 |
type: mteb/trec-covid
|
8226 |
metrics:
|
8227 |
- type: ndcg_at_1
|
8228 |
+
value: 85
|
8229 |
- type: ndcg_at_3
|
8230 |
value: 84.58099999999999
|
8231 |
- type: ndcg_at_5
|
|
|
8267 |
- type: recall_at_1000
|
8268 |
value: 53.516
|
8269 |
- type: precision_at_1
|
8270 |
+
value: 90
|
8271 |
- type: precision_at_3
|
8272 |
value: 89.333
|
8273 |
- type: precision_at_5
|
|
|
8281 |
- type: precision_at_1000
|
8282 |
value: 25.380000000000003
|
8283 |
- type: mrr_at_1
|
8284 |
+
value: 90
|
8285 |
- type: mrr_at_3
|
8286 |
value: 94.6667
|
8287 |
- type: mrr_at_5
|
|
|
9036 |
type: PairClassification
|
9037 |
pipeline_tag: sentence-similarity
|
9038 |
tags:
|
|
|
9039 |
- feature-extraction
|
|
|
9040 |
- mteb
|
9041 |
- arctic
|
9042 |
- snowflake-arctic-embed
|
|
|
9043 |
- onnx
|
9044 |
- teradata
|
|
|
9045 |
---
|
9046 |
# A Teradata Vantage compatible Embeddings Model
|
9047 |
|
|
|
9193 |
print("Cosine similiarity for embeddings calculated with SentenceTransformer:" + str(cos_sim(embeddings_1_sentence_transformer, embeddings_2_sentence_transformer)))
|
9194 |
```
|
9195 |
|
9196 |
+
You can find the detailed ONNX vs. SentenceTransformer result comparison steps in the file [test_local.py](./test_local.py)
|
|