Update README.md
Browse files
README.md
CHANGED
|
@@ -1122,7 +1122,7 @@ model-index:
|
|
| 1122 |
- type: precision_at_3
|
| 1123 |
value: 42.667
|
| 1124 |
- type: precision_at_5
|
| 1125 |
-
value: 36
|
| 1126 |
- type: recall_at_1
|
| 1127 |
value: 6.669
|
| 1128 |
- type: recall_at_10
|
|
@@ -1777,7 +1777,7 @@ model-index:
|
|
| 1777 |
- type: map_at_5
|
| 1778 |
value: 9.92
|
| 1779 |
- type: mrr_at_1
|
| 1780 |
-
value: 23
|
| 1781 |
- type: mrr_at_10
|
| 1782 |
value: 33.78
|
| 1783 |
- type: mrr_at_100
|
|
@@ -1789,7 +1789,7 @@ model-index:
|
|
| 1789 |
- type: mrr_at_5
|
| 1790 |
value: 32.565
|
| 1791 |
- type: ndcg_at_1
|
| 1792 |
-
value: 23
|
| 1793 |
- type: ndcg_at_10
|
| 1794 |
value: 19.863
|
| 1795 |
- type: ndcg_at_100
|
|
@@ -1801,7 +1801,7 @@ model-index:
|
|
| 1801 |
- type: ndcg_at_5
|
| 1802 |
value: 16.384
|
| 1803 |
- type: precision_at_1
|
| 1804 |
-
value: 23
|
| 1805 |
- type: precision_at_10
|
| 1806 |
value: 10.39
|
| 1807 |
- type: precision_at_100
|
|
@@ -2224,7 +2224,7 @@ model-index:
|
|
| 2224 |
- type: map_at_5
|
| 2225 |
value: 0.9039999999999999
|
| 2226 |
- type: mrr_at_1
|
| 2227 |
-
value: 68
|
| 2228 |
- type: mrr_at_10
|
| 2229 |
value: 81.01899999999999
|
| 2230 |
- type: mrr_at_100
|
|
@@ -2236,7 +2236,7 @@ model-index:
|
|
| 2236 |
- type: mrr_at_5
|
| 2237 |
value: 80.733
|
| 2238 |
- type: ndcg_at_1
|
| 2239 |
-
value: 63
|
| 2240 |
- type: ndcg_at_10
|
| 2241 |
value: 65.913
|
| 2242 |
- type: ndcg_at_100
|
|
@@ -2248,7 +2248,7 @@ model-index:
|
|
| 2248 |
- type: ndcg_at_5
|
| 2249 |
value: 66.69699999999999
|
| 2250 |
- type: precision_at_1
|
| 2251 |
-
value: 68
|
| 2252 |
- type: precision_at_10
|
| 2253 |
value: 71.6
|
| 2254 |
- type: precision_at_100
|
|
@@ -2258,7 +2258,7 @@ model-index:
|
|
| 2258 |
- type: precision_at_3
|
| 2259 |
value: 72.667
|
| 2260 |
- type: precision_at_5
|
| 2261 |
-
value: 74
|
| 2262 |
- type: recall_at_1
|
| 2263 |
value: 0.189
|
| 2264 |
- type: recall_at_10
|
|
@@ -2492,13 +2492,11 @@ model-index:
|
|
| 2492 |
task:
|
| 2493 |
type: PairClassification
|
| 2494 |
tags:
|
| 2495 |
-
- sentence-transformers
|
| 2496 |
- feature-extraction
|
| 2497 |
- sentence-similarity
|
| 2498 |
- mteb
|
| 2499 |
- onnx
|
| 2500 |
- teradata
|
| 2501 |
-
|
| 2502 |
---
|
| 2503 |
# A Teradata Vantage compatible Embeddings Model
|
| 2504 |
|
|
@@ -2652,5 +2650,4 @@ print("Cosine similiarity for embeddings calculated with ONNX:" + str(cos_sim(em
|
|
| 2652 |
print("Cosine similiarity for embeddings calculated with SentenceTransformer:" + str(cos_sim(embeddings_1_sentence_transformer, embeddings_2_sentence_transformer)))
|
| 2653 |
```
|
| 2654 |
|
| 2655 |
-
You can find the detailed ONNX vs. SentenceTransformer result comparison steps in the file [test_local.py](./test_local.py)
|
| 2656 |
-
|
|
|
|
| 1122 |
- type: precision_at_3
|
| 1123 |
value: 42.667
|
| 1124 |
- type: precision_at_5
|
| 1125 |
+
value: 36
|
| 1126 |
- type: recall_at_1
|
| 1127 |
value: 6.669
|
| 1128 |
- type: recall_at_10
|
|
|
|
| 1777 |
- type: map_at_5
|
| 1778 |
value: 9.92
|
| 1779 |
- type: mrr_at_1
|
| 1780 |
+
value: 23
|
| 1781 |
- type: mrr_at_10
|
| 1782 |
value: 33.78
|
| 1783 |
- type: mrr_at_100
|
|
|
|
| 1789 |
- type: mrr_at_5
|
| 1790 |
value: 32.565
|
| 1791 |
- type: ndcg_at_1
|
| 1792 |
+
value: 23
|
| 1793 |
- type: ndcg_at_10
|
| 1794 |
value: 19.863
|
| 1795 |
- type: ndcg_at_100
|
|
|
|
| 1801 |
- type: ndcg_at_5
|
| 1802 |
value: 16.384
|
| 1803 |
- type: precision_at_1
|
| 1804 |
+
value: 23
|
| 1805 |
- type: precision_at_10
|
| 1806 |
value: 10.39
|
| 1807 |
- type: precision_at_100
|
|
|
|
| 2224 |
- type: map_at_5
|
| 2225 |
value: 0.9039999999999999
|
| 2226 |
- type: mrr_at_1
|
| 2227 |
+
value: 68
|
| 2228 |
- type: mrr_at_10
|
| 2229 |
value: 81.01899999999999
|
| 2230 |
- type: mrr_at_100
|
|
|
|
| 2236 |
- type: mrr_at_5
|
| 2237 |
value: 80.733
|
| 2238 |
- type: ndcg_at_1
|
| 2239 |
+
value: 63
|
| 2240 |
- type: ndcg_at_10
|
| 2241 |
value: 65.913
|
| 2242 |
- type: ndcg_at_100
|
|
|
|
| 2248 |
- type: ndcg_at_5
|
| 2249 |
value: 66.69699999999999
|
| 2250 |
- type: precision_at_1
|
| 2251 |
+
value: 68
|
| 2252 |
- type: precision_at_10
|
| 2253 |
value: 71.6
|
| 2254 |
- type: precision_at_100
|
|
|
|
| 2258 |
- type: precision_at_3
|
| 2259 |
value: 72.667
|
| 2260 |
- type: precision_at_5
|
| 2261 |
+
value: 74
|
| 2262 |
- type: recall_at_1
|
| 2263 |
value: 0.189
|
| 2264 |
- type: recall_at_10
|
|
|
|
| 2492 |
task:
|
| 2493 |
type: PairClassification
|
| 2494 |
tags:
|
|
|
|
| 2495 |
- feature-extraction
|
| 2496 |
- sentence-similarity
|
| 2497 |
- mteb
|
| 2498 |
- onnx
|
| 2499 |
- teradata
|
|
|
|
| 2500 |
---
|
| 2501 |
# A Teradata Vantage compatible Embeddings Model
|
| 2502 |
|
|
|
|
| 2650 |
print("Cosine similiarity for embeddings calculated with SentenceTransformer:" + str(cos_sim(embeddings_1_sentence_transformer, embeddings_2_sentence_transformer)))
|
| 2651 |
```
|
| 2652 |
|
| 2653 |
+
You can find the detailed ONNX vs. SentenceTransformer result comparison steps in the file [test_local.py](./test_local.py)
|
|
|