Update README.md
Browse files
README.md
CHANGED
@@ -1122,7 +1122,7 @@ model-index:
|
|
1122 |
- type: precision_at_3
|
1123 |
value: 42.667
|
1124 |
- type: precision_at_5
|
1125 |
-
value: 36
|
1126 |
- type: recall_at_1
|
1127 |
value: 6.669
|
1128 |
- type: recall_at_10
|
@@ -1777,7 +1777,7 @@ model-index:
|
|
1777 |
- type: map_at_5
|
1778 |
value: 9.92
|
1779 |
- type: mrr_at_1
|
1780 |
-
value: 23
|
1781 |
- type: mrr_at_10
|
1782 |
value: 33.78
|
1783 |
- type: mrr_at_100
|
@@ -1789,7 +1789,7 @@ model-index:
|
|
1789 |
- type: mrr_at_5
|
1790 |
value: 32.565
|
1791 |
- type: ndcg_at_1
|
1792 |
-
value: 23
|
1793 |
- type: ndcg_at_10
|
1794 |
value: 19.863
|
1795 |
- type: ndcg_at_100
|
@@ -1801,7 +1801,7 @@ model-index:
|
|
1801 |
- type: ndcg_at_5
|
1802 |
value: 16.384
|
1803 |
- type: precision_at_1
|
1804 |
-
value: 23
|
1805 |
- type: precision_at_10
|
1806 |
value: 10.39
|
1807 |
- type: precision_at_100
|
@@ -2224,7 +2224,7 @@ model-index:
|
|
2224 |
- type: map_at_5
|
2225 |
value: 0.9039999999999999
|
2226 |
- type: mrr_at_1
|
2227 |
-
value: 68
|
2228 |
- type: mrr_at_10
|
2229 |
value: 81.01899999999999
|
2230 |
- type: mrr_at_100
|
@@ -2236,7 +2236,7 @@ model-index:
|
|
2236 |
- type: mrr_at_5
|
2237 |
value: 80.733
|
2238 |
- type: ndcg_at_1
|
2239 |
-
value: 63
|
2240 |
- type: ndcg_at_10
|
2241 |
value: 65.913
|
2242 |
- type: ndcg_at_100
|
@@ -2248,7 +2248,7 @@ model-index:
|
|
2248 |
- type: ndcg_at_5
|
2249 |
value: 66.69699999999999
|
2250 |
- type: precision_at_1
|
2251 |
-
value: 68
|
2252 |
- type: precision_at_10
|
2253 |
value: 71.6
|
2254 |
- type: precision_at_100
|
@@ -2258,7 +2258,7 @@ model-index:
|
|
2258 |
- type: precision_at_3
|
2259 |
value: 72.667
|
2260 |
- type: precision_at_5
|
2261 |
-
value: 74
|
2262 |
- type: recall_at_1
|
2263 |
value: 0.189
|
2264 |
- type: recall_at_10
|
@@ -2492,13 +2492,11 @@ model-index:
|
|
2492 |
task:
|
2493 |
type: PairClassification
|
2494 |
tags:
|
2495 |
-
- sentence-transformers
|
2496 |
- feature-extraction
|
2497 |
- sentence-similarity
|
2498 |
- mteb
|
2499 |
- onnx
|
2500 |
- teradata
|
2501 |
-
|
2502 |
---
|
2503 |
# A Teradata Vantage compatible Embeddings Model
|
2504 |
|
@@ -2652,5 +2650,4 @@ print("Cosine similiarity for embeddings calculated with ONNX:" + str(cos_sim(em
|
|
2652 |
print("Cosine similiarity for embeddings calculated with SentenceTransformer:" + str(cos_sim(embeddings_1_sentence_transformer, embeddings_2_sentence_transformer)))
|
2653 |
```
|
2654 |
|
2655 |
-
You can find the detailed ONNX vs. SentenceTransformer result comparison steps in the file [test_local.py](./test_local.py)
|
2656 |
-
|
|
|
1122 |
- type: precision_at_3
|
1123 |
value: 42.667
|
1124 |
- type: precision_at_5
|
1125 |
+
value: 36
|
1126 |
- type: recall_at_1
|
1127 |
value: 6.669
|
1128 |
- type: recall_at_10
|
|
|
1777 |
- type: map_at_5
|
1778 |
value: 9.92
|
1779 |
- type: mrr_at_1
|
1780 |
+
value: 23
|
1781 |
- type: mrr_at_10
|
1782 |
value: 33.78
|
1783 |
- type: mrr_at_100
|
|
|
1789 |
- type: mrr_at_5
|
1790 |
value: 32.565
|
1791 |
- type: ndcg_at_1
|
1792 |
+
value: 23
|
1793 |
- type: ndcg_at_10
|
1794 |
value: 19.863
|
1795 |
- type: ndcg_at_100
|
|
|
1801 |
- type: ndcg_at_5
|
1802 |
value: 16.384
|
1803 |
- type: precision_at_1
|
1804 |
+
value: 23
|
1805 |
- type: precision_at_10
|
1806 |
value: 10.39
|
1807 |
- type: precision_at_100
|
|
|
2224 |
- type: map_at_5
|
2225 |
value: 0.9039999999999999
|
2226 |
- type: mrr_at_1
|
2227 |
+
value: 68
|
2228 |
- type: mrr_at_10
|
2229 |
value: 81.01899999999999
|
2230 |
- type: mrr_at_100
|
|
|
2236 |
- type: mrr_at_5
|
2237 |
value: 80.733
|
2238 |
- type: ndcg_at_1
|
2239 |
+
value: 63
|
2240 |
- type: ndcg_at_10
|
2241 |
value: 65.913
|
2242 |
- type: ndcg_at_100
|
|
|
2248 |
- type: ndcg_at_5
|
2249 |
value: 66.69699999999999
|
2250 |
- type: precision_at_1
|
2251 |
+
value: 68
|
2252 |
- type: precision_at_10
|
2253 |
value: 71.6
|
2254 |
- type: precision_at_100
|
|
|
2258 |
- type: precision_at_3
|
2259 |
value: 72.667
|
2260 |
- type: precision_at_5
|
2261 |
+
value: 74
|
2262 |
- type: recall_at_1
|
2263 |
value: 0.189
|
2264 |
- type: recall_at_10
|
|
|
2492 |
task:
|
2493 |
type: PairClassification
|
2494 |
tags:
|
|
|
2495 |
- feature-extraction
|
2496 |
- sentence-similarity
|
2497 |
- mteb
|
2498 |
- onnx
|
2499 |
- teradata
|
|
|
2500 |
---
|
2501 |
# A Teradata Vantage compatible Embeddings Model
|
2502 |
|
|
|
2650 |
print("Cosine similiarity for embeddings calculated with SentenceTransformer:" + str(cos_sim(embeddings_1_sentence_transformer, embeddings_2_sentence_transformer)))
|
2651 |
```
|
2652 |
|
2653 |
+
You can find the detailed ONNX vs. SentenceTransformer result comparison steps in the file [test_local.py](./test_local.py)
|
|