Update README.md
Browse files
README.md
CHANGED
@@ -750,7 +750,7 @@ model-index:
|
|
750 |
- type: recall_at_100
|
751 |
value: 63.851
|
752 |
- type: recall_at_1000
|
753 |
-
value: 82
|
754 |
- type: recall_at_3
|
755 |
value: 34.288000000000004
|
756 |
- type: recall_at_5
|
@@ -2222,7 +2222,7 @@ model-index:
|
|
2222 |
- type: map_at_5
|
2223 |
value: 1.024
|
2224 |
- type: mrr_at_1
|
2225 |
-
value: 88
|
2226 |
- type: mrr_at_10
|
2227 |
value: 93.067
|
2228 |
- type: mrr_at_100
|
@@ -2234,7 +2234,7 @@ model-index:
|
|
2234 |
- type: mrr_at_5
|
2235 |
value: 93.067
|
2236 |
- type: ndcg_at_1
|
2237 |
-
value: 82
|
2238 |
- type: ndcg_at_10
|
2239 |
value: 75.899
|
2240 |
- type: ndcg_at_100
|
@@ -2246,7 +2246,7 @@ model-index:
|
|
2246 |
- type: ndcg_at_5
|
2247 |
value: 78.39699999999999
|
2248 |
- type: precision_at_1
|
2249 |
-
value: 88
|
2250 |
- type: precision_at_10
|
2251 |
value: 79.60000000000001
|
2252 |
- type: precision_at_100
|
@@ -2490,14 +2490,11 @@ model-index:
|
|
2490 |
task:
|
2491 |
type: PairClassification
|
2492 |
tags:
|
2493 |
-
- sentence-transformers
|
2494 |
- feature-extraction
|
2495 |
- sentence-similarity
|
2496 |
-
- transformers
|
2497 |
- mteb
|
2498 |
- onnx
|
2499 |
- teradata
|
2500 |
-
|
2501 |
---
|
2502 |
# A Teradata Vantage compatible Embeddings Model
|
2503 |
|
@@ -2649,5 +2646,4 @@ print("Cosine similiarity for embeddings calculated with ONNX:" + str(cos_sim(em
|
|
2649 |
print("Cosine similiarity for embeddings calculated with SentenceTransformer:" + str(cos_sim(embeddings_1_sentence_transformer, embeddings_2_sentence_transformer)))
|
2650 |
```
|
2651 |
|
2652 |
-
You can find the detailed ONNX vs. SentenceTransformer result comparison steps in the file [test_local.py](./test_local.py)
|
2653 |
-
|
|
|
750 |
- type: recall_at_100
|
751 |
value: 63.851
|
752 |
- type: recall_at_1000
|
753 |
+
value: 82
|
754 |
- type: recall_at_3
|
755 |
value: 34.288000000000004
|
756 |
- type: recall_at_5
|
|
|
2222 |
- type: map_at_5
|
2223 |
value: 1.024
|
2224 |
- type: mrr_at_1
|
2225 |
+
value: 88
|
2226 |
- type: mrr_at_10
|
2227 |
value: 93.067
|
2228 |
- type: mrr_at_100
|
|
|
2234 |
- type: mrr_at_5
|
2235 |
value: 93.067
|
2236 |
- type: ndcg_at_1
|
2237 |
+
value: 82
|
2238 |
- type: ndcg_at_10
|
2239 |
value: 75.899
|
2240 |
- type: ndcg_at_100
|
|
|
2246 |
- type: ndcg_at_5
|
2247 |
value: 78.39699999999999
|
2248 |
- type: precision_at_1
|
2249 |
+
value: 88
|
2250 |
- type: precision_at_10
|
2251 |
value: 79.60000000000001
|
2252 |
- type: precision_at_100
|
|
|
2490 |
task:
|
2491 |
type: PairClassification
|
2492 |
tags:
|
|
|
2493 |
- feature-extraction
|
2494 |
- sentence-similarity
|
|
|
2495 |
- mteb
|
2496 |
- onnx
|
2497 |
- teradata
|
|
|
2498 |
---
|
2499 |
# A Teradata Vantage compatible Embeddings Model
|
2500 |
|
|
|
2646 |
print("Cosine similiarity for embeddings calculated with SentenceTransformer:" + str(cos_sim(embeddings_1_sentence_transformer, embeddings_2_sentence_transformer)))
|
2647 |
```
|
2648 |
|
2649 |
+
You can find the detailed ONNX vs. SentenceTransformer result comparison steps in the file [test_local.py](./test_local.py)
|
|