File size: 4,700 Bytes
b646e79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
license: mit
base_model: microsoft/deberta-v3-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Classifier_with_external_sets_05
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Classifier_with_external_sets_05

This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2840
- Accuracy: 0.9627

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:--------:|
| No log        | 0.9983  | 289   | 0.6833          | 0.7547   |
| 0.403         | 2.0     | 579   | 0.4286          | 0.7700   |
| 0.403         | 2.9983  | 868   | 0.5718          | 0.8196   |
| 0.1978        | 4.0     | 1158  | 0.3336          | 0.8813   |
| 0.1978        | 4.9983  | 1447  | 0.3455          | 0.8795   |
| 0.1523        | 6.0     | 1737  | 0.5141          | 0.8398   |
| 0.1371        | 6.9983  | 2026  | 0.2422          | 0.9291   |
| 0.1371        | 8.0     | 2316  | 0.1653          | 0.9486   |
| 0.1073        | 8.9983  | 2605  | 0.1606          | 0.9480   |
| 0.1073        | 10.0    | 2895  | 0.3522          | 0.8991   |
| 0.0966        | 10.9983 | 3184  | 0.2096          | 0.9309   |
| 0.0966        | 12.0    | 3474  | 0.1263          | 0.9664   |
| 0.0887        | 12.9983 | 3763  | 0.2030          | 0.9529   |
| 0.0935        | 14.0    | 4053  | 0.1045          | 0.9676   |
| 0.0935        | 14.9983 | 4342  | 0.1270          | 0.9664   |
| 0.0751        | 16.0    | 4632  | 0.1873          | 0.9596   |
| 0.0751        | 16.9983 | 4921  | 0.2181          | 0.9621   |
| 0.0644        | 18.0    | 5211  | 0.1207          | 0.9713   |
| 0.0589        | 18.9983 | 5500  | 0.3134          | 0.9315   |
| 0.0589        | 20.0    | 5790  | 0.2447          | 0.9505   |
| 0.0451        | 20.9983 | 6079  | 0.2650          | 0.9474   |
| 0.0451        | 22.0    | 6369  | 0.2205          | 0.9596   |
| 0.0414        | 22.9983 | 6658  | 0.1899          | 0.9657   |
| 0.0414        | 24.0    | 6948  | 0.2518          | 0.9590   |
| 0.0415        | 24.9983 | 7237  | 0.2175          | 0.9572   |
| 0.0358        | 26.0    | 7527  | 0.3080          | 0.9462   |
| 0.0358        | 26.9983 | 7816  | 0.2570          | 0.9474   |
| 0.0332        | 28.0    | 8106  | 0.2519          | 0.9554   |
| 0.0332        | 28.9983 | 8395  | 0.3117          | 0.9492   |
| 0.028         | 30.0    | 8685  | 0.3270          | 0.9517   |
| 0.028         | 30.9983 | 8974  | 0.2641          | 0.9602   |
| 0.0281        | 32.0    | 9264  | 0.2669          | 0.9615   |
| 0.0227        | 32.9983 | 9553  | 0.2558          | 0.9615   |
| 0.0227        | 34.0    | 9843  | 0.3255          | 0.9505   |
| 0.0218        | 34.9983 | 10132 | 0.3818          | 0.9431   |
| 0.0218        | 36.0    | 10422 | 0.2411          | 0.9657   |
| 0.0224        | 36.9983 | 10711 | 0.2391          | 0.9645   |
| 0.0201        | 38.0    | 11001 | 0.3097          | 0.9602   |
| 0.0201        | 38.9983 | 11290 | 0.3057          | 0.9590   |
| 0.0168        | 40.0    | 11580 | 0.2537          | 0.9621   |
| 0.0168        | 40.9983 | 11869 | 0.2661          | 0.9615   |
| 0.0171        | 42.0    | 12159 | 0.3151          | 0.9590   |
| 0.0171        | 42.9983 | 12448 | 0.2814          | 0.9621   |
| 0.0176        | 44.0    | 12738 | 0.2748          | 0.9633   |
| 0.0153        | 44.9983 | 13027 | 0.2950          | 0.9633   |
| 0.0153        | 46.0    | 13317 | 0.3171          | 0.9596   |
| 0.0133        | 46.9983 | 13606 | 0.2659          | 0.9633   |
| 0.0133        | 48.0    | 13896 | 0.3022          | 0.9633   |
| 0.0142        | 48.9983 | 14185 | 0.3028          | 0.9609   |
| 0.0142        | 49.9136 | 14450 | 0.2840          | 0.9627   |


### Framework versions

- Transformers 4.40.0
- Pytorch 2.2.2+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1