File size: 2,076 Bytes
d3786f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: mit
base_model: microsoft/deberta-v3-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Classifier_with_external_sets_02
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Classifier_with_external_sets_02

This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6968
- Accuracy: 0.5034

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| No log        | 0.9983 | 289  | 0.6937          | 0.4966   |
| 0.6958        | 2.0    | 579  | 0.6958          | 0.4966   |
| 0.6958        | 2.9983 | 868  | 0.6972          | 0.4966   |
| 0.6845        | 4.0    | 1158 | 0.6931          | 0.5034   |
| 0.6845        | 4.9983 | 1447 | 0.7009          | 0.5034   |
| 0.6548        | 6.0    | 1737 | 0.7251          | 0.5034   |
| 0.6484        | 6.9983 | 2026 | 0.7186          | 0.5034   |
| 0.6484        | 8.0    | 2316 | 0.7049          | 0.5034   |
| 0.6453        | 8.9983 | 2605 | 0.6997          | 0.5034   |
| 0.6453        | 9.9827 | 2890 | 0.6968          | 0.5034   |


### Framework versions

- Transformers 4.40.0
- Pytorch 2.2.2+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1