End of training
Browse files- README.md +112 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/deberta-v3-large
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: Classifier_30k
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# Classifier_30k
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.1296
|
21 |
+
- Accuracy: 0.9876
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 2e-06
|
41 |
+
- train_batch_size: 8
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 4
|
45 |
+
- total_train_batch_size: 32
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 50
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
+
|:-------------:|:-------:|:-----:|:---------------:|:--------:|
|
55 |
+
| 0.3588 | 0.9994 | 831 | 0.3084 | 0.9091 |
|
56 |
+
| 0.1252 | 2.0 | 1663 | 0.2260 | 0.9453 |
|
57 |
+
| 0.1123 | 2.9994 | 2494 | 0.1241 | 0.9604 |
|
58 |
+
| 0.0896 | 4.0 | 3326 | 0.1372 | 0.9655 |
|
59 |
+
| 0.0749 | 4.9994 | 4157 | 0.1541 | 0.9708 |
|
60 |
+
| 0.0743 | 6.0 | 4989 | 0.1127 | 0.9715 |
|
61 |
+
| 0.0596 | 6.9994 | 5820 | 0.1782 | 0.9672 |
|
62 |
+
| 0.0494 | 8.0 | 6652 | 0.1352 | 0.9749 |
|
63 |
+
| 0.0443 | 8.9994 | 7483 | 0.1232 | 0.9681 |
|
64 |
+
| 0.0405 | 10.0 | 8315 | 0.0756 | 0.9838 |
|
65 |
+
| 0.0383 | 10.9994 | 9146 | 0.2025 | 0.9600 |
|
66 |
+
| 0.0361 | 12.0 | 9978 | 0.1130 | 0.9796 |
|
67 |
+
| 0.0288 | 12.9994 | 10809 | 0.0906 | 0.9855 |
|
68 |
+
| 0.0249 | 14.0 | 11641 | 0.1122 | 0.9827 |
|
69 |
+
| 0.0222 | 14.9994 | 12472 | 0.0713 | 0.9862 |
|
70 |
+
| 0.0239 | 16.0 | 13304 | 0.0552 | 0.9876 |
|
71 |
+
| 0.0234 | 16.9994 | 14135 | 0.0728 | 0.9864 |
|
72 |
+
| 0.0258 | 18.0 | 14967 | 0.0558 | 0.9891 |
|
73 |
+
| 0.0208 | 18.9994 | 15798 | 0.0715 | 0.9879 |
|
74 |
+
| 0.0199 | 20.0 | 16630 | 0.0753 | 0.9885 |
|
75 |
+
| 0.0143 | 20.9994 | 17461 | 0.0812 | 0.9872 |
|
76 |
+
| 0.0255 | 22.0 | 18293 | 0.1661 | 0.9744 |
|
77 |
+
| 0.0156 | 22.9994 | 19124 | 0.0751 | 0.9883 |
|
78 |
+
| 0.013 | 24.0 | 19956 | 0.0718 | 0.9862 |
|
79 |
+
| 0.0126 | 24.9994 | 20787 | 0.0829 | 0.9853 |
|
80 |
+
| 0.0123 | 26.0 | 21619 | 0.0848 | 0.9857 |
|
81 |
+
| 0.0109 | 26.9994 | 22450 | 0.0913 | 0.9864 |
|
82 |
+
| 0.0095 | 28.0 | 23282 | 0.1607 | 0.9774 |
|
83 |
+
| 0.0096 | 28.9994 | 24113 | 0.0958 | 0.9853 |
|
84 |
+
| 0.0074 | 30.0 | 24945 | 0.1264 | 0.9857 |
|
85 |
+
| 0.0091 | 30.9994 | 25776 | 0.1030 | 0.9881 |
|
86 |
+
| 0.0096 | 32.0 | 26608 | 0.0954 | 0.9879 |
|
87 |
+
| 0.0074 | 32.9994 | 27439 | 0.1103 | 0.9885 |
|
88 |
+
| 0.0067 | 34.0 | 28271 | 0.1803 | 0.9791 |
|
89 |
+
| 0.0044 | 34.9994 | 29102 | 0.1597 | 0.9817 |
|
90 |
+
| 0.0045 | 36.0 | 29934 | 0.0878 | 0.9894 |
|
91 |
+
| 0.0034 | 36.9994 | 30765 | 0.1680 | 0.9806 |
|
92 |
+
| 0.0066 | 38.0 | 31597 | 0.1114 | 0.9870 |
|
93 |
+
| 0.0041 | 38.9994 | 32428 | 0.0910 | 0.9896 |
|
94 |
+
| 0.0043 | 40.0 | 33260 | 0.1435 | 0.9840 |
|
95 |
+
| 0.0037 | 40.9994 | 34091 | 0.1233 | 0.9881 |
|
96 |
+
| 0.0046 | 42.0 | 34923 | 0.1347 | 0.9864 |
|
97 |
+
| 0.0029 | 42.9994 | 35754 | 0.1134 | 0.9883 |
|
98 |
+
| 0.0017 | 44.0 | 36586 | 0.1125 | 0.9879 |
|
99 |
+
| 0.0025 | 44.9994 | 37417 | 0.1400 | 0.9859 |
|
100 |
+
| 0.0023 | 46.0 | 38249 | 0.1228 | 0.9879 |
|
101 |
+
| 0.0017 | 46.9994 | 39080 | 0.1445 | 0.9862 |
|
102 |
+
| 0.0011 | 48.0 | 39912 | 0.1375 | 0.9876 |
|
103 |
+
| 0.0013 | 48.9994 | 40743 | 0.1323 | 0.9876 |
|
104 |
+
| 0.0021 | 49.9699 | 41550 | 0.1296 | 0.9876 |
|
105 |
+
|
106 |
+
|
107 |
+
### Framework versions
|
108 |
+
|
109 |
+
- Transformers 4.40.0
|
110 |
+
- Pytorch 2.2.2+cu121
|
111 |
+
- Datasets 2.19.0
|
112 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1740304440
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2349dd499f02e7b112ec09a25779855b2ef9285138aed83d1fbc3e433d55ef88
|
3 |
size 1740304440
|