# coding=utf-8 # Copyright 2025 The ACC Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ACC-FiPhi-NeuralMark-V3""" import random import math import time import os PHI = (1 + math.sqrt(5)) / 2 text = os.getenv("FiPhi-NeuralMark-V3/TRAINING_DATA.txt") words = text.split() trigram_chain = {} for i in range(len(words) - 2): key = (words[i], words[i + 1]) next_word = words[i + 2] if key not in trigram_chain: trigram_chain[key] = [] trigram_chain[key].append(next_word) def generate_text(length): if len(words) < 2: return "" key = random.choice(list(trigram_chain.keys())) result = [key[0], key[1]] for _ in range(length - 2): if key in trigram_chain: next_word = random.choice(trigram_chain[key]) result.append(next_word) key = (key[1], next_word) else: break return " ".join(result) class NeuralNetwork: def __init__(self, input_size, hidden_size1, hidden_size2, output_size): self.input_size = input_size self.hidden_size1 = hidden_size1 self.hidden_size2 = hidden_size2 self.output_size = output_size self.weights_input_hidden1 = [ [random.random() for _ in range(input_size)] for _ in range(hidden_size1) ] self.weights_hidden1_hidden2 = [ [random.random() for _ in range(hidden_size1)] for _ in range(hidden_size2) ] self.weights_hidden2_output = [ [random.random() for _ in range(hidden_size2)] for _ in range(output_size) ] self.bias_hidden1 = [random.random() for _ in range(hidden_size1)] self.bias_hidden2 = [random.random() for _ in range(hidden_size2)] self.bias_output = [random.random() for _ in range(output_size)] def sigmoid(self, x): return 1 / (1 + math.exp(-x)) def sigmoid_derivative(self, x): return x * (1 - x) def forward(self, inputs): self.hidden_input1 = [ sum(inputs[i] * self.weights_input_hidden1[j][i] for i in range(self.input_size)) + self.bias_hidden1[j] for j in range(self.hidden_size1) ] self.hidden_output1 = [self.sigmoid(x) for x in self.hidden_input1] self.hidden_input2 = [ sum(self.hidden_output1[i] * self.weights_hidden1_hidden2[j][i] for i in range(self.hidden_size1)) + self.bias_hidden2[j] for j in range(self.hidden_size2) ] self.hidden_output2 = [self.sigmoid(x) for x in self.hidden_input2] self.output_input = [ sum(self.hidden_output2[i] * self.weights_hidden2_output[j][i] for i in range(self.hidden_size2)) + self.bias_output[j] for j in range(self.output_size) ] self.output_output = [self.sigmoid(x) for x in self.output_input] return self.output_output def backward(self, inputs, target, learning_rate=0.1): output_errors = [target[i] - self.output_output[i] for i in range(self.output_size)] output_deltas = [output_errors[i] * self.sigmoid_derivative(self.output_output[i]) for i in range(self.output_size)] hidden2_errors = [ sum(output_deltas[k] * self.weights_hidden2_output[k][j] for k in range(self.output_size)) for j in range(self.hidden_size2) ] hidden2_deltas = [hidden2_errors[j] * self.sigmoid_derivative(self.hidden_output2[j]) for j in range(self.hidden_size2)] hidden1_errors = [ sum(hidden2_deltas[k] * self.weights_hidden1_hidden2[k][j] for k in range(self.hidden_size2)) for j in range(self.hidden_size1) ] hidden1_deltas = [hidden1_errors[j] * self.sigmoid_derivative(self.hidden_output1[j]) for j in range(self.hidden_size1)] for i in range(self.output_size): for j in range(self.hidden_size2): self.weights_hidden2_output[i][j] += learning_rate * output_deltas[i] * self.hidden_output2[j] self.bias_output[i] += learning_rate * output_deltas[i] for i in range(self.hidden_size2): for j in range(self.hidden_size1): self.weights_hidden1_hidden2[i][j] += learning_rate * hidden2_deltas[i] * self.hidden_output1[j] self.bias_hidden2[i] += learning_rate * hidden2_deltas[i] for i in range(self.hidden_size1): for j in range(self.input_size): self.weights_input_hidden1[i][j] += learning_rate * hidden1_deltas[i] * inputs[j] self.bias_hidden1[i] += learning_rate * hidden1_deltas[i] class RecurrentNeuralNetwork: def __init__(self, input_size, hidden_size, output_size): self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.weights_input_hidden = [ [random.random() for _ in range(input_size)] for _ in range(hidden_size) ] self.weights_hidden_hidden = [ [random.random() for _ in range(hidden_size)] for _ in range(hidden_size) ] self.weights_hidden_output = [ [random.random() for _ in range(hidden_size)] for _ in range(output_size) ] self.bias_hidden = [random.random() for _ in range(hidden_size)] self.bias_output = [random.random() for _ in range(output_size)] def sigmoid(self, x): return 1 / (1 + math.exp(-x)) def sigmoid_derivative(self, x): return x * (1 - x) def forward(self, inputs): self.hidden_state = [0] * self.hidden_size for _ in range(2): for i in range(len(inputs)): current_input = [0] * self.input_size current_input[i] = inputs[i] combined = [ sum(current_input[k] * self.weights_input_hidden[j][k] for k in range(self.input_size)) + sum(self.hidden_state[k] * self.weights_hidden_hidden[j][k] for k in range(self.hidden_size)) + self.bias_hidden[j] for j in range(self.hidden_size) ] self.hidden_state = [self.sigmoid(val) for val in combined] output = [ sum(self.hidden_state[k] * self.weights_hidden_output[i][k] for k in range(self.hidden_size)) + self.bias_output[i] for i in range(self.output_size) ] return [self.sigmoid(o) for o in output] def backward(self, inputs, target, learning_rate=0.1): output = self.forward(inputs) output_errors = [target[i] - output[i] for i in range(self.output_size)] output_deltas = [output_errors[i] * self.sigmoid_derivative(output[i]) for i in range(self.output_size)] hidden_errors = [ sum(output_deltas[k] * self.weights_hidden_output[k][j] for k in range(self.output_size)) for j in range(self.hidden_size) ] hidden_deltas = [hidden_errors[j] * self.sigmoid_derivative(self.hidden_state[j]) for j in range(self.hidden_size)] for i in range(self.output_size): for j in range(self.hidden_size): self.weights_hidden_output[i][j] += learning_rate * output_deltas[i] * self.hidden_state[j] self.bias_output[i] += learning_rate * output_deltas[i] for j in range(self.hidden_size): for k in range(self.input_size): self.weights_input_hidden[j][k] += learning_rate * hidden_deltas[j] * (inputs[k] if k < len(inputs) else 0) self.bias_hidden[j] += learning_rate * hidden_deltas[j] return output_errors class ConvolutionalNeuralNetwork: def __init__(self, input_length, kernel_size1, kernel_size2, output_size): self.input_length = input_length self.kernel_size1 = kernel_size1 self.kernel_size2 = kernel_size2 self.output_size = output_size self.kernel1 = [random.random() for _ in range(kernel_size1)] self.bias1 = random.random() self.kernel2 = [random.random() for _ in range(kernel_size2)] self.bias2 = random.random() self.weights_output = [ [random.random() for _ in range(input_length - kernel_size1 - kernel_size2 + 2)] for _ in range(output_size) ] self.bias_output = [random.random() for _ in range(output_size)] def relu(self, x): return x if x > 0 else 0 def relu_derivative(self, x): return 1 if x > 0 else 0 def convolve(self, inputs, kernel, bias): conv_output = [] kernel_size = len(kernel) for i in range(len(inputs) - kernel_size + 1): s = sum(inputs[i + j] * kernel[j] for j in range(kernel_size)) + bias conv_output.append(self.relu(s)) return conv_output def forward(self, inputs): conv1 = self.convolve(inputs, self.kernel1, self.bias1) conv2 = self.convolve(conv1, self.kernel2, self.bias2) fc_input = conv2 output = [ sum(fc_input[j] * self.weights_output[i][j] for j in range(len(fc_input))) + self.bias_output[i] for i in range(self.output_size) ] return [self.relu(o) for o in output] def backward(self, inputs, target, learning_rate=0.1): output = self.forward(inputs) output_errors = [target[i] - output[i] for i in range(self.output_size)] for i in range(self.output_size): for j in range(len(inputs) - self.kernel_size1 - self.kernel_size2 + 2): self.weights_output[i][j] += learning_rate * output_errors[i] self.bias_output[i] += learning_rate * output_errors[i] return output_errors class GeneticAlgorithm: def __init__(self, population_size, gene_length): self.population_size = population_size self.gene_length = gene_length self.population = [ [random.random() for _ in range(gene_length)] for _ in range(population_size) ] def fitness(self, individual): return -sum((gene - PHI) ** 2 for gene in individual) def selection(self): selected = sorted(self.population, key=self.fitness, reverse=True) return selected[: self.population_size // 2] def crossover(self, parent1, parent2): point = random.randint(1, self.gene_length - 1) child = parent1[:point] + parent2[point:] return child def mutate(self, individual, mutation_rate=0.01): for i in range(self.gene_length): if random.random() < mutation_rate: individual[i] = random.random() return individual def evolve(self, generations): for _ in range(generations): selected = self.selection() new_population = selected[:] while len(new_population) < self.population_size: parent1 = random.choice(selected) parent2 = random.choice(selected) child = self.crossover(parent1, parent2) child = self.mutate(child) new_population.append(child) self.population = new_population best = max(self.population, key=self.fitness) return best, self.fitness(best) class LSTM: def __init__(self, input_size, hidden_size, output_size): self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.W_i = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)] self.U_i = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)] self.b_i = [random.random() for _ in range(hidden_size)] self.W_f = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)] self.U_f = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)] self.b_f = [random.random() for _ in range(hidden_size)] self.W_o = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)] self.U_o = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)] self.b_o = [random.random() for _ in range(hidden_size)] self.W_c = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)] self.U_c = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)] self.b_c = [random.random() for _ in range(hidden_size)] self.W_y = [[random.random() for _ in range(hidden_size)] for _ in range(output_size)] self.b_y = [random.random() for _ in range(output_size)] def sigmoid(self, x): return 1 / (1 + math.exp(-x)) def forward(self, inputs): h = [0] * self.hidden_size c = [0] * self.hidden_size i_gate = [] for j in range(self.hidden_size): s = sum(inputs[k] * self.W_i[j][k] for k in range(self.input_size)) + \ sum(h[k] * self.U_i[j][k] for k in range(self.hidden_size)) + self.b_i[j] i_gate.append(self.sigmoid(s)) f_gate = [] for j in range(self.hidden_size): s = sum(inputs[k] * self.W_f[j][k] for k in range(self.input_size)) + \ sum(h[k] * self.U_f[j][k] for k in range(self.hidden_size)) + self.b_f[j] f_gate.append(self.sigmoid(s)) o_gate = [] for j in range(self.hidden_size): s = sum(inputs[k] * self.W_o[j][k] for k in range(self.input_size)) + \ sum(h[k] * self.U_o[j][k] for k in range(self.hidden_size)) + self.b_o[j] o_gate.append(self.sigmoid(s)) g_gate = [] for j in range(self.hidden_size): s = sum(inputs[k] * self.W_c[j][k] for k in range(self.input_size)) + \ sum(h[k] * self.U_c[j][k] for k in range(self.hidden_size)) + self.b_c[j] g_gate.append(math.tanh(s)) c = [f_gate[j] * c[j] + i_gate[j] * g_gate[j] for j in range(self.hidden_size)] h = [o_gate[j] * math.tanh(c[j]) for j in range(self.hidden_size)] y = [] for i in range(self.output_size): s = sum(h[j] * self.W_y[i][j] for j in range(self.hidden_size)) + self.b_y[i] y.append(self.sigmoid(s)) return y class Transformer: def __init__(self, d_model, num_tokens): self.d_model = d_model self.num_tokens = num_tokens self.W_q = [[random.random() for _ in range(d_model)] for _ in range(d_model)] self.W_k = [[random.random() for _ in range(d_model)] for _ in range(d_model)] self.W_v = [[random.random() for _ in range(d_model)] for _ in range(d_model)] self.W_o = [[random.random() for _ in range(d_model)] for _ in range(d_model)] def dot_product(self, a, b): return sum(x * y for x, y in zip(a, b)) def matmul_vector(self, matrix, vector): return [sum(matrix[i][j] * vector[j] for j in range(len(vector))) for i in range(len(matrix))] def softmax(self, x): m = max(x) exps = [math.exp(i - m) for i in x] s = sum(exps) return [j / s for j in exps] def forward(self, inputs): queries = [self.matmul_vector(self.W_q, token) for token in inputs] keys = [self.matmul_vector(self.W_k, token) for token in inputs] values = [self.matmul_vector(self.W_v, token) for token in inputs] outputs = [] for i in range(len(inputs)): scores = [] for j in range(len(inputs)): score = self.dot_product(queries[i], keys[j]) / math.sqrt(self.d_model) scores.append(score) attn = self.softmax(scores) attn_output = [0] * self.d_model for j in range(len(inputs)): for k in range(self.d_model): attn_output[k] += attn[j] * values[j][k] out = self.matmul_vector(self.W_o, attn_output) outputs.append(out) avg_output = [sum(x[k] for x in outputs) / len(outputs) for k in range(self.d_model)] proj_weights = [[random.random() for _ in range(self.d_model)] for _ in range(self.num_tokens)] proj_bias = [random.random() for _ in range(self.num_tokens)] token_scores = [ sum(avg_output[k] * proj_weights[i][k] for k in range(self.d_model)) + proj_bias[i] for i in range(self.num_tokens) ] token_output = [1 / (1 + math.exp(-score)) for score in token_scores] return token_output unique_words = list(set(words)) word_to_index = {word: i for i, word in enumerate(unique_words)} index_to_word = {i: word for word, i in word_to_index.items()} input_data = [[0] * len(unique_words) for _ in range(len(words) - 2)] for i in range(len(words) - 2): input_data[i][word_to_index[words[i]]] = 1 output_data = [[0] * len(unique_words) for _ in range(len(words) - 2)] for i in range(len(words) - 2): output_data[i][word_to_index[words[i + 1]]] = 1 input_size = len(unique_words) hidden_size1 = round(PHI * input_size) hidden_size2 = round(PHI * hidden_size1) output_size = len(unique_words) nn = NeuralNetwork(input_size, hidden_size1, hidden_size2, output_size) epochs = round(100 * PHI) for epoch in range(epochs): for i in range(len(input_data)): nn.forward(input_data[i]) nn.backward(input_data[i], output_data[i], learning_rate=0.1) if (epoch + 1) % round(PHI) == 0: print("Feedforward NN Epoch {}/{}".format(epoch + 1, epochs)) rnn = RecurrentNeuralNetwork(input_size, hidden_size1, output_size) rnn_output = rnn.forward(input_data[0]) print("Recurrent NN Output:", rnn_output) kernel_size1 = round(3 * PHI) kernel_size2 = round(2 * PHI) cnn = ConvolutionalNeuralNetwork(input_length=round(10 * PHI), kernel_size1=kernel_size1, kernel_size2=kernel_size2, output_size=output_size) sample_input = [random.random() for _ in range(round(10 * PHI))] cnn_output = cnn.forward(sample_input) print("Convolutional NN Output:", cnn_output) population_size = round(10 * PHI) ga = GeneticAlgorithm(population_size, round(PHI * 5)) best_individual, best_fitness = ga.evolve(round(50 * PHI)) print("Genetic Algorithm Best Individual:", best_individual, "Fitness:", best_fitness) lstm_hidden_size = round(PHI * input_size) lstm = LSTM(input_size, lstm_hidden_size, output_size) lstm_output = lstm.forward(input_data[0]) print("LSTM Output:", lstm_output) transformer_d_model = round(PHI * input_size) transformer = Transformer(transformer_d_model, output_size) transformer_input = [] for i in range(len(unique_words)): vec = [0] * transformer_d_model if i < transformer_d_model: vec[i] = 1 transformer_input.append(vec) transformer_output = transformer.forward(transformer_input) print("Transformer Output:", transformer_output) def advanced_text_generation(input_vector): ff_output = nn.forward(input_vector) rnn_out = rnn.forward(input_vector) lstm_out = lstm.forward(input_vector) transformer_out = transformer.forward([input_vector]) combined = [ (ff_output[i] + rnn_out[i] + lstm_out[i] + transformer_out[i]) / 4 for i in range(len(ff_output)) ] predicted_index = combined.index(max(combined)) predicted_word = index_to_word[predicted_index] long_text = "" current_length = round(10 * PHI) for _ in range(5): segment = generate_text(current_length) long_text += segment + " " current_length = round(current_length * PHI) return long_text + predicted_word def chat(): print("FiPhi-NeuralMark ACC Initialized") base_length = round(5 * PHI) while True: user_input = input("\nYou: ") if user_input.lower() == "exit": print("Goodbye!") break user_input_tokens = user_input.split() input_vector = [0] * len(unique_words) for word in user_input_tokens: if word in word_to_index: input_vector[word_to_index[word]] = 1 response = advanced_text_generation(input_vector) print("FiPhi-NeuralMark:", response) chat()