Create model.py
Browse files
model.py
ADDED
@@ -0,0 +1,742 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025 The ACC Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""ACC-FiPhi-NeuralMark-V3"""
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
import random
|
41 |
+
import math
|
42 |
+
import time
|
43 |
+
import os
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
PHI = (1 + math.sqrt(5)) / 2
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
text = os.getenv("TRAINING_DATA.txt")
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
words = text.split()
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
trigram_chain = {}
|
64 |
+
for i in range(len(words) - 2):
|
65 |
+
key = (words[i], words[i + 1])
|
66 |
+
next_word = words[i + 2]
|
67 |
+
if key not in trigram_chain:
|
68 |
+
trigram_chain[key] = []
|
69 |
+
trigram_chain[key].append(next_word)
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
def generate_text(length):
|
79 |
+
if len(words) < 2:
|
80 |
+
return ""
|
81 |
+
key = random.choice(list(trigram_chain.keys()))
|
82 |
+
result = [key[0], key[1]]
|
83 |
+
for _ in range(length - 2):
|
84 |
+
if key in trigram_chain:
|
85 |
+
next_word = random.choice(trigram_chain[key])
|
86 |
+
result.append(next_word)
|
87 |
+
key = (key[1], next_word)
|
88 |
+
else:
|
89 |
+
break
|
90 |
+
return " ".join(result)
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
class NeuralNetwork:
|
100 |
+
def __init__(self, input_size, hidden_size1, hidden_size2, output_size):
|
101 |
+
self.input_size = input_size
|
102 |
+
self.hidden_size1 = hidden_size1
|
103 |
+
self.hidden_size2 = hidden_size2
|
104 |
+
self.output_size = output_size
|
105 |
+
self.weights_input_hidden1 = [
|
106 |
+
[random.random() for _ in range(input_size)] for _ in range(hidden_size1)
|
107 |
+
]
|
108 |
+
self.weights_hidden1_hidden2 = [
|
109 |
+
[random.random() for _ in range(hidden_size1)] for _ in range(hidden_size2)
|
110 |
+
]
|
111 |
+
self.weights_hidden2_output = [
|
112 |
+
[random.random() for _ in range(hidden_size2)] for _ in range(output_size)
|
113 |
+
]
|
114 |
+
self.bias_hidden1 = [random.random() for _ in range(hidden_size1)]
|
115 |
+
self.bias_hidden2 = [random.random() for _ in range(hidden_size2)]
|
116 |
+
self.bias_output = [random.random() for _ in range(output_size)]
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
def sigmoid(self, x):
|
122 |
+
return 1 / (1 + math.exp(-x))
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
def sigmoid_derivative(self, x):
|
128 |
+
return x * (1 - x)
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
def forward(self, inputs):
|
134 |
+
self.hidden_input1 = [
|
135 |
+
sum(inputs[i] * self.weights_input_hidden1[j][i] for i in range(self.input_size)) + self.bias_hidden1[j]
|
136 |
+
for j in range(self.hidden_size1)
|
137 |
+
]
|
138 |
+
self.hidden_output1 = [self.sigmoid(x) for x in self.hidden_input1]
|
139 |
+
self.hidden_input2 = [
|
140 |
+
sum(self.hidden_output1[i] * self.weights_hidden1_hidden2[j][i] for i in range(self.hidden_size1)) + self.bias_hidden2[j]
|
141 |
+
for j in range(self.hidden_size2)
|
142 |
+
]
|
143 |
+
self.hidden_output2 = [self.sigmoid(x) for x in self.hidden_input2]
|
144 |
+
self.output_input = [
|
145 |
+
sum(self.hidden_output2[i] * self.weights_hidden2_output[j][i] for i in range(self.hidden_size2)) + self.bias_output[j]
|
146 |
+
for j in range(self.output_size)
|
147 |
+
]
|
148 |
+
self.output_output = [self.sigmoid(x) for x in self.output_input]
|
149 |
+
return self.output_output
|
150 |
+
|
151 |
+
|
152 |
+
|
153 |
+
|
154 |
+
def backward(self, inputs, target, learning_rate=0.1):
|
155 |
+
output_errors = [target[i] - self.output_output[i] for i in range(self.output_size)]
|
156 |
+
output_deltas = [output_errors[i] * self.sigmoid_derivative(self.output_output[i])
|
157 |
+
for i in range(self.output_size)]
|
158 |
+
hidden2_errors = [
|
159 |
+
sum(output_deltas[k] * self.weights_hidden2_output[k][j] for k in range(self.output_size))
|
160 |
+
for j in range(self.hidden_size2)
|
161 |
+
]
|
162 |
+
hidden2_deltas = [hidden2_errors[j] * self.sigmoid_derivative(self.hidden_output2[j])
|
163 |
+
for j in range(self.hidden_size2)]
|
164 |
+
hidden1_errors = [
|
165 |
+
sum(hidden2_deltas[k] * self.weights_hidden1_hidden2[k][j] for k in range(self.hidden_size2))
|
166 |
+
for j in range(self.hidden_size1)
|
167 |
+
]
|
168 |
+
hidden1_deltas = [hidden1_errors[j] * self.sigmoid_derivative(self.hidden_output1[j])
|
169 |
+
for j in range(self.hidden_size1)]
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
for i in range(self.output_size):
|
175 |
+
for j in range(self.hidden_size2):
|
176 |
+
self.weights_hidden2_output[i][j] += learning_rate * output_deltas[i] * self.hidden_output2[j]
|
177 |
+
self.bias_output[i] += learning_rate * output_deltas[i]
|
178 |
+
|
179 |
+
|
180 |
+
|
181 |
+
|
182 |
+
for i in range(self.hidden_size2):
|
183 |
+
for j in range(self.hidden_size1):
|
184 |
+
self.weights_hidden1_hidden2[i][j] += learning_rate * hidden2_deltas[i] * self.hidden_output1[j]
|
185 |
+
self.bias_hidden2[i] += learning_rate * hidden2_deltas[i]
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
+
for i in range(self.hidden_size1):
|
191 |
+
for j in range(self.input_size):
|
192 |
+
self.weights_input_hidden1[i][j] += learning_rate * hidden1_deltas[i] * inputs[j]
|
193 |
+
self.bias_hidden1[i] += learning_rate * hidden1_deltas[i]
|
194 |
+
|
195 |
+
|
196 |
+
|
197 |
+
|
198 |
+
|
199 |
+
|
200 |
+
|
201 |
+
|
202 |
+
class RecurrentNeuralNetwork:
|
203 |
+
def __init__(self, input_size, hidden_size, output_size):
|
204 |
+
self.input_size = input_size
|
205 |
+
self.hidden_size = hidden_size
|
206 |
+
self.output_size = output_size
|
207 |
+
self.weights_input_hidden = [
|
208 |
+
[random.random() for _ in range(input_size)] for _ in range(hidden_size)
|
209 |
+
]
|
210 |
+
self.weights_hidden_hidden = [
|
211 |
+
[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)
|
212 |
+
]
|
213 |
+
self.weights_hidden_output = [
|
214 |
+
[random.random() for _ in range(hidden_size)] for _ in range(output_size)
|
215 |
+
]
|
216 |
+
self.bias_hidden = [random.random() for _ in range(hidden_size)]
|
217 |
+
self.bias_output = [random.random() for _ in range(output_size)]
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
|
222 |
+
def sigmoid(self, x):
|
223 |
+
return 1 / (1 + math.exp(-x))
|
224 |
+
|
225 |
+
|
226 |
+
|
227 |
+
|
228 |
+
def sigmoid_derivative(self, x):
|
229 |
+
return x * (1 - x)
|
230 |
+
|
231 |
+
|
232 |
+
|
233 |
+
|
234 |
+
def forward(self, inputs):
|
235 |
+
self.hidden_state = [0] * self.hidden_size
|
236 |
+
for _ in range(2):
|
237 |
+
for i in range(len(inputs)):
|
238 |
+
current_input = [0] * self.input_size
|
239 |
+
current_input[i] = inputs[i]
|
240 |
+
combined = [
|
241 |
+
sum(current_input[k] * self.weights_input_hidden[j][k] for k in range(self.input_size)) +
|
242 |
+
sum(self.hidden_state[k] * self.weights_hidden_hidden[j][k] for k in range(self.hidden_size)) +
|
243 |
+
self.bias_hidden[j]
|
244 |
+
for j in range(self.hidden_size)
|
245 |
+
]
|
246 |
+
self.hidden_state = [self.sigmoid(val) for val in combined]
|
247 |
+
output = [
|
248 |
+
sum(self.hidden_state[k] * self.weights_hidden_output[i][k] for k in range(self.hidden_size)) +
|
249 |
+
self.bias_output[i]
|
250 |
+
for i in range(self.output_size)
|
251 |
+
]
|
252 |
+
return [self.sigmoid(o) for o in output]
|
253 |
+
|
254 |
+
|
255 |
+
|
256 |
+
|
257 |
+
def backward(self, inputs, target, learning_rate=0.1):
|
258 |
+
output = self.forward(inputs)
|
259 |
+
output_errors = [target[i] - output[i] for i in range(self.output_size)]
|
260 |
+
output_deltas = [output_errors[i] * self.sigmoid_derivative(output[i])
|
261 |
+
for i in range(self.output_size)]
|
262 |
+
hidden_errors = [
|
263 |
+
sum(output_deltas[k] * self.weights_hidden_output[k][j] for k in range(self.output_size))
|
264 |
+
for j in range(self.hidden_size)
|
265 |
+
]
|
266 |
+
hidden_deltas = [hidden_errors[j] * self.sigmoid_derivative(self.hidden_state[j])
|
267 |
+
for j in range(self.hidden_size)]
|
268 |
+
|
269 |
+
|
270 |
+
|
271 |
+
|
272 |
+
for i in range(self.output_size):
|
273 |
+
for j in range(self.hidden_size):
|
274 |
+
self.weights_hidden_output[i][j] += learning_rate * output_deltas[i] * self.hidden_state[j]
|
275 |
+
self.bias_output[i] += learning_rate * output_deltas[i]
|
276 |
+
|
277 |
+
|
278 |
+
|
279 |
+
|
280 |
+
for j in range(self.hidden_size):
|
281 |
+
for k in range(self.input_size):
|
282 |
+
self.weights_input_hidden[j][k] += learning_rate * hidden_deltas[j] * (inputs[k] if k < len(inputs) else 0)
|
283 |
+
self.bias_hidden[j] += learning_rate * hidden_deltas[j]
|
284 |
+
return output_errors
|
285 |
+
|
286 |
+
|
287 |
+
|
288 |
+
|
289 |
+
|
290 |
+
|
291 |
+
|
292 |
+
|
293 |
+
class ConvolutionalNeuralNetwork:
|
294 |
+
def __init__(self, input_length, kernel_size1, kernel_size2, output_size):
|
295 |
+
self.input_length = input_length
|
296 |
+
self.kernel_size1 = kernel_size1
|
297 |
+
self.kernel_size2 = kernel_size2
|
298 |
+
self.output_size = output_size
|
299 |
+
self.kernel1 = [random.random() for _ in range(kernel_size1)]
|
300 |
+
self.bias1 = random.random()
|
301 |
+
self.kernel2 = [random.random() for _ in range(kernel_size2)]
|
302 |
+
self.bias2 = random.random()
|
303 |
+
self.weights_output = [
|
304 |
+
[random.random() for _ in range(input_length - kernel_size1 - kernel_size2 + 2)]
|
305 |
+
for _ in range(output_size)
|
306 |
+
]
|
307 |
+
self.bias_output = [random.random() for _ in range(output_size)]
|
308 |
+
|
309 |
+
|
310 |
+
|
311 |
+
|
312 |
+
def relu(self, x):
|
313 |
+
return x if x > 0 else 0
|
314 |
+
|
315 |
+
|
316 |
+
|
317 |
+
|
318 |
+
def relu_derivative(self, x):
|
319 |
+
return 1 if x > 0 else 0
|
320 |
+
|
321 |
+
|
322 |
+
|
323 |
+
|
324 |
+
def convolve(self, inputs, kernel, bias):
|
325 |
+
conv_output = []
|
326 |
+
kernel_size = len(kernel)
|
327 |
+
for i in range(len(inputs) - kernel_size + 1):
|
328 |
+
s = sum(inputs[i + j] * kernel[j] for j in range(kernel_size)) + bias
|
329 |
+
conv_output.append(self.relu(s))
|
330 |
+
return conv_output
|
331 |
+
|
332 |
+
|
333 |
+
|
334 |
+
|
335 |
+
def forward(self, inputs):
|
336 |
+
conv1 = self.convolve(inputs, self.kernel1, self.bias1)
|
337 |
+
conv2 = self.convolve(conv1, self.kernel2, self.bias2)
|
338 |
+
fc_input = conv2
|
339 |
+
output = [
|
340 |
+
sum(fc_input[j] * self.weights_output[i][j] for j in range(len(fc_input))) + self.bias_output[i]
|
341 |
+
for i in range(self.output_size)
|
342 |
+
]
|
343 |
+
return [self.relu(o) for o in output]
|
344 |
+
|
345 |
+
|
346 |
+
|
347 |
+
|
348 |
+
def backward(self, inputs, target, learning_rate=0.1):
|
349 |
+
output = self.forward(inputs)
|
350 |
+
output_errors = [target[i] - output[i] for i in range(self.output_size)]
|
351 |
+
for i in range(self.output_size):
|
352 |
+
for j in range(len(inputs) - self.kernel_size1 - self.kernel_size2 + 2):
|
353 |
+
self.weights_output[i][j] += learning_rate * output_errors[i]
|
354 |
+
self.bias_output[i] += learning_rate * output_errors[i]
|
355 |
+
return output_errors
|
356 |
+
|
357 |
+
|
358 |
+
|
359 |
+
|
360 |
+
|
361 |
+
|
362 |
+
|
363 |
+
|
364 |
+
class GeneticAlgorithm:
|
365 |
+
def __init__(self, population_size, gene_length):
|
366 |
+
self.population_size = population_size
|
367 |
+
self.gene_length = gene_length
|
368 |
+
self.population = [
|
369 |
+
[random.random() for _ in range(gene_length)] for _ in range(population_size)
|
370 |
+
]
|
371 |
+
|
372 |
+
|
373 |
+
|
374 |
+
|
375 |
+
def fitness(self, individual):
|
376 |
+
return -sum((gene - PHI) ** 2 for gene in individual)
|
377 |
+
|
378 |
+
|
379 |
+
|
380 |
+
|
381 |
+
def selection(self):
|
382 |
+
selected = sorted(self.population, key=self.fitness, reverse=True)
|
383 |
+
return selected[: self.population_size // 2]
|
384 |
+
|
385 |
+
|
386 |
+
|
387 |
+
|
388 |
+
def crossover(self, parent1, parent2):
|
389 |
+
point = random.randint(1, self.gene_length - 1)
|
390 |
+
child = parent1[:point] + parent2[point:]
|
391 |
+
return child
|
392 |
+
|
393 |
+
|
394 |
+
|
395 |
+
|
396 |
+
def mutate(self, individual, mutation_rate=0.01):
|
397 |
+
for i in range(self.gene_length):
|
398 |
+
if random.random() < mutation_rate:
|
399 |
+
individual[i] = random.random()
|
400 |
+
return individual
|
401 |
+
|
402 |
+
|
403 |
+
|
404 |
+
|
405 |
+
def evolve(self, generations):
|
406 |
+
for _ in range(generations):
|
407 |
+
selected = self.selection()
|
408 |
+
new_population = selected[:]
|
409 |
+
while len(new_population) < self.population_size:
|
410 |
+
parent1 = random.choice(selected)
|
411 |
+
parent2 = random.choice(selected)
|
412 |
+
child = self.crossover(parent1, parent2)
|
413 |
+
child = self.mutate(child)
|
414 |
+
new_population.append(child)
|
415 |
+
self.population = new_population
|
416 |
+
best = max(self.population, key=self.fitness)
|
417 |
+
return best, self.fitness(best)
|
418 |
+
|
419 |
+
|
420 |
+
|
421 |
+
|
422 |
+
|
423 |
+
|
424 |
+
|
425 |
+
|
426 |
+
class LSTM:
|
427 |
+
def __init__(self, input_size, hidden_size, output_size):
|
428 |
+
self.input_size = input_size
|
429 |
+
self.hidden_size = hidden_size
|
430 |
+
self.output_size = output_size
|
431 |
+
self.W_i = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
|
432 |
+
self.U_i = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
|
433 |
+
self.b_i = [random.random() for _ in range(hidden_size)]
|
434 |
+
self.W_f = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
|
435 |
+
self.U_f = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
|
436 |
+
self.b_f = [random.random() for _ in range(hidden_size)]
|
437 |
+
self.W_o = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
|
438 |
+
self.U_o = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
|
439 |
+
self.b_o = [random.random() for _ in range(hidden_size)]
|
440 |
+
self.W_c = [[random.random() for _ in range(input_size)] for _ in range(hidden_size)]
|
441 |
+
self.U_c = [[random.random() for _ in range(hidden_size)] for _ in range(hidden_size)]
|
442 |
+
self.b_c = [random.random() for _ in range(hidden_size)]
|
443 |
+
self.W_y = [[random.random() for _ in range(hidden_size)] for _ in range(output_size)]
|
444 |
+
self.b_y = [random.random() for _ in range(output_size)]
|
445 |
+
|
446 |
+
|
447 |
+
|
448 |
+
|
449 |
+
def sigmoid(self, x):
|
450 |
+
return 1 / (1 + math.exp(-x))
|
451 |
+
|
452 |
+
|
453 |
+
|
454 |
+
|
455 |
+
def forward(self, inputs):
|
456 |
+
h = [0] * self.hidden_size
|
457 |
+
c = [0] * self.hidden_size
|
458 |
+
|
459 |
+
|
460 |
+
|
461 |
+
|
462 |
+
i_gate = []
|
463 |
+
for j in range(self.hidden_size):
|
464 |
+
s = sum(inputs[k] * self.W_i[j][k] for k in range(self.input_size)) + \
|
465 |
+
sum(h[k] * self.U_i[j][k] for k in range(self.hidden_size)) + self.b_i[j]
|
466 |
+
i_gate.append(self.sigmoid(s))
|
467 |
+
|
468 |
+
|
469 |
+
|
470 |
+
|
471 |
+
f_gate = []
|
472 |
+
for j in range(self.hidden_size):
|
473 |
+
s = sum(inputs[k] * self.W_f[j][k] for k in range(self.input_size)) + \
|
474 |
+
sum(h[k] * self.U_f[j][k] for k in range(self.hidden_size)) + self.b_f[j]
|
475 |
+
f_gate.append(self.sigmoid(s))
|
476 |
+
|
477 |
+
|
478 |
+
|
479 |
+
|
480 |
+
o_gate = []
|
481 |
+
for j in range(self.hidden_size):
|
482 |
+
s = sum(inputs[k] * self.W_o[j][k] for k in range(self.input_size)) + \
|
483 |
+
sum(h[k] * self.U_o[j][k] for k in range(self.hidden_size)) + self.b_o[j]
|
484 |
+
o_gate.append(self.sigmoid(s))
|
485 |
+
|
486 |
+
|
487 |
+
|
488 |
+
|
489 |
+
g_gate = []
|
490 |
+
for j in range(self.hidden_size):
|
491 |
+
s = sum(inputs[k] * self.W_c[j][k] for k in range(self.input_size)) + \
|
492 |
+
sum(h[k] * self.U_c[j][k] for k in range(self.hidden_size)) + self.b_c[j]
|
493 |
+
g_gate.append(math.tanh(s))
|
494 |
+
|
495 |
+
|
496 |
+
|
497 |
+
|
498 |
+
c = [f_gate[j] * c[j] + i_gate[j] * g_gate[j] for j in range(self.hidden_size)]
|
499 |
+
h = [o_gate[j] * math.tanh(c[j]) for j in range(self.hidden_size)]
|
500 |
+
|
501 |
+
|
502 |
+
|
503 |
+
|
504 |
+
y = []
|
505 |
+
for i in range(self.output_size):
|
506 |
+
s = sum(h[j] * self.W_y[i][j] for j in range(self.hidden_size)) + self.b_y[i]
|
507 |
+
y.append(self.sigmoid(s))
|
508 |
+
return y
|
509 |
+
|
510 |
+
|
511 |
+
|
512 |
+
|
513 |
+
|
514 |
+
|
515 |
+
|
516 |
+
|
517 |
+
class Transformer:
|
518 |
+
def __init__(self, d_model, num_tokens):
|
519 |
+
self.d_model = d_model
|
520 |
+
self.num_tokens = num_tokens
|
521 |
+
self.W_q = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
|
522 |
+
self.W_k = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
|
523 |
+
self.W_v = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
|
524 |
+
self.W_o = [[random.random() for _ in range(d_model)] for _ in range(d_model)]
|
525 |
+
|
526 |
+
|
527 |
+
|
528 |
+
|
529 |
+
def dot_product(self, a, b):
|
530 |
+
return sum(x * y for x, y in zip(a, b))
|
531 |
+
|
532 |
+
|
533 |
+
|
534 |
+
|
535 |
+
def matmul_vector(self, matrix, vector):
|
536 |
+
return [sum(matrix[i][j] * vector[j] for j in range(len(vector))) for i in range(len(matrix))]
|
537 |
+
|
538 |
+
|
539 |
+
|
540 |
+
|
541 |
+
def softmax(self, x):
|
542 |
+
m = max(x)
|
543 |
+
exps = [math.exp(i - m) for i in x]
|
544 |
+
s = sum(exps)
|
545 |
+
return [j / s for j in exps]
|
546 |
+
|
547 |
+
|
548 |
+
|
549 |
+
|
550 |
+
def forward(self, inputs):
|
551 |
+
queries = [self.matmul_vector(self.W_q, token) for token in inputs]
|
552 |
+
keys = [self.matmul_vector(self.W_k, token) for token in inputs]
|
553 |
+
values = [self.matmul_vector(self.W_v, token) for token in inputs]
|
554 |
+
outputs = []
|
555 |
+
for i in range(len(inputs)):
|
556 |
+
scores = []
|
557 |
+
for j in range(len(inputs)):
|
558 |
+
score = self.dot_product(queries[i], keys[j]) / math.sqrt(self.d_model)
|
559 |
+
scores.append(score)
|
560 |
+
attn = self.softmax(scores)
|
561 |
+
attn_output = [0] * self.d_model
|
562 |
+
for j in range(len(inputs)):
|
563 |
+
for k in range(self.d_model):
|
564 |
+
attn_output[k] += attn[j] * values[j][k]
|
565 |
+
out = self.matmul_vector(self.W_o, attn_output)
|
566 |
+
outputs.append(out)
|
567 |
+
avg_output = [sum(x[k] for x in outputs) / len(outputs) for k in range(self.d_model)]
|
568 |
+
proj_weights = [[random.random() for _ in range(self.d_model)] for _ in range(self.num_tokens)]
|
569 |
+
proj_bias = [random.random() for _ in range(self.num_tokens)]
|
570 |
+
token_scores = [
|
571 |
+
sum(avg_output[k] * proj_weights[i][k] for k in range(self.d_model)) + proj_bias[i]
|
572 |
+
for i in range(self.num_tokens)
|
573 |
+
]
|
574 |
+
token_output = [1 / (1 + math.exp(-score)) for score in token_scores]
|
575 |
+
return token_output
|
576 |
+
|
577 |
+
|
578 |
+
|
579 |
+
|
580 |
+
|
581 |
+
|
582 |
+
|
583 |
+
|
584 |
+
unique_words = list(set(words))
|
585 |
+
word_to_index = {word: i for i, word in enumerate(unique_words)}
|
586 |
+
index_to_word = {i: word for word, i in word_to_index.items()}
|
587 |
+
|
588 |
+
|
589 |
+
|
590 |
+
|
591 |
+
input_data = [[0] * len(unique_words) for _ in range(len(words) - 2)]
|
592 |
+
for i in range(len(words) - 2):
|
593 |
+
input_data[i][word_to_index[words[i]]] = 1
|
594 |
+
|
595 |
+
|
596 |
+
|
597 |
+
|
598 |
+
output_data = [[0] * len(unique_words) for _ in range(len(words) - 2)]
|
599 |
+
for i in range(len(words) - 2):
|
600 |
+
output_data[i][word_to_index[words[i + 1]]] = 1
|
601 |
+
|
602 |
+
|
603 |
+
|
604 |
+
|
605 |
+
input_size = len(unique_words)
|
606 |
+
hidden_size1 = round(PHI * input_size)
|
607 |
+
hidden_size2 = round(PHI * hidden_size1)
|
608 |
+
output_size = len(unique_words)
|
609 |
+
|
610 |
+
|
611 |
+
|
612 |
+
|
613 |
+
nn = NeuralNetwork(input_size, hidden_size1, hidden_size2, output_size)
|
614 |
+
epochs = round(100 * PHI)
|
615 |
+
for epoch in range(epochs):
|
616 |
+
for i in range(len(input_data)):
|
617 |
+
nn.forward(input_data[i])
|
618 |
+
nn.backward(input_data[i], output_data[i], learning_rate=0.1)
|
619 |
+
if (epoch + 1) % round(PHI) == 0:
|
620 |
+
print("Feedforward NN Epoch {}/{}".format(epoch + 1, epochs))
|
621 |
+
|
622 |
+
|
623 |
+
|
624 |
+
|
625 |
+
rnn = RecurrentNeuralNetwork(input_size, hidden_size1, output_size)
|
626 |
+
rnn_output = rnn.forward(input_data[0])
|
627 |
+
print("Recurrent NN Output:", rnn_output)
|
628 |
+
|
629 |
+
|
630 |
+
|
631 |
+
|
632 |
+
kernel_size1 = round(3 * PHI)
|
633 |
+
kernel_size2 = round(2 * PHI)
|
634 |
+
cnn = ConvolutionalNeuralNetwork(input_length=round(10 * PHI), kernel_size1=kernel_size1,
|
635 |
+
kernel_size2=kernel_size2, output_size=output_size)
|
636 |
+
sample_input = [random.random() for _ in range(round(10 * PHI))]
|
637 |
+
cnn_output = cnn.forward(sample_input)
|
638 |
+
print("Convolutional NN Output:", cnn_output)
|
639 |
+
|
640 |
+
|
641 |
+
|
642 |
+
|
643 |
+
population_size = round(10 * PHI)
|
644 |
+
ga = GeneticAlgorithm(population_size, round(PHI * 5))
|
645 |
+
best_individual, best_fitness = ga.evolve(round(50 * PHI))
|
646 |
+
print("Genetic Algorithm Best Individual:", best_individual, "Fitness:", best_fitness)
|
647 |
+
|
648 |
+
|
649 |
+
|
650 |
+
|
651 |
+
lstm_hidden_size = round(PHI * input_size)
|
652 |
+
lstm = LSTM(input_size, lstm_hidden_size, output_size)
|
653 |
+
lstm_output = lstm.forward(input_data[0])
|
654 |
+
print("LSTM Output:", lstm_output)
|
655 |
+
|
656 |
+
|
657 |
+
|
658 |
+
|
659 |
+
transformer_d_model = round(PHI * input_size)
|
660 |
+
transformer = Transformer(transformer_d_model, output_size)
|
661 |
+
transformer_input = []
|
662 |
+
for i in range(len(unique_words)):
|
663 |
+
vec = [0] * transformer_d_model
|
664 |
+
if i < transformer_d_model:
|
665 |
+
vec[i] = 1
|
666 |
+
transformer_input.append(vec)
|
667 |
+
transformer_output = transformer.forward(transformer_input)
|
668 |
+
print("Transformer Output:", transformer_output)
|
669 |
+
|
670 |
+
|
671 |
+
|
672 |
+
|
673 |
+
|
674 |
+
|
675 |
+
|
676 |
+
|
677 |
+
def advanced_text_generation(input_vector):
|
678 |
+
ff_output = nn.forward(input_vector)
|
679 |
+
rnn_out = rnn.forward(input_vector)
|
680 |
+
lstm_out = lstm.forward(input_vector)
|
681 |
+
transformer_out = transformer.forward([input_vector])
|
682 |
+
combined = [
|
683 |
+
(ff_output[i] + rnn_out[i] + lstm_out[i] + transformer_out[i]) / 4
|
684 |
+
for i in range(len(ff_output))
|
685 |
+
]
|
686 |
+
predicted_index = combined.index(max(combined))
|
687 |
+
predicted_word = index_to_word[predicted_index]
|
688 |
+
long_text = ""
|
689 |
+
current_length = round(10 * PHI)
|
690 |
+
for _ in range(5):
|
691 |
+
segment = generate_text(current_length)
|
692 |
+
long_text += segment + " "
|
693 |
+
current_length = round(current_length * PHI)
|
694 |
+
return long_text + predicted_word
|
695 |
+
|
696 |
+
|
697 |
+
|
698 |
+
|
699 |
+
|
700 |
+
|
701 |
+
|
702 |
+
|
703 |
+
def chat():
|
704 |
+
print("FiPhi-NeuralMark ACC Initialized")
|
705 |
+
base_length = round(5 * PHI)
|
706 |
+
while True:
|
707 |
+
user_input = input("\nYou: ")
|
708 |
+
if user_input.lower() == "exit":
|
709 |
+
print("Goodbye!")
|
710 |
+
break
|
711 |
+
user_input_tokens = user_input.split()
|
712 |
+
input_vector = [0] * len(unique_words)
|
713 |
+
for word in user_input_tokens:
|
714 |
+
if word in word_to_index:
|
715 |
+
input_vector[word_to_index[word]] = 1
|
716 |
+
response = advanced_text_generation(input_vector)
|
717 |
+
print("FiPhi-NeuralMark:", response)
|
718 |
+
|
719 |
+
|
720 |
+
|
721 |
+
|
722 |
+
|
723 |
+
|
724 |
+
|
725 |
+
|
726 |
+
chat()
|
727 |
+
|
728 |
+
|
729 |
+
|
730 |
+
|
731 |
+
|
732 |
+
|
733 |
+
|
734 |
+
|
735 |
+
|
736 |
+
|
737 |
+
|
738 |
+
|
739 |
+
|
740 |
+
|
741 |
+
|
742 |
+
|