Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +139 -393
- config.json +24 -24
- config_sentence_transformers.json +9 -9
- modules.json +13 -13
- sentence_bert_config.json +3 -3
- special_tokens_map.json +51 -51
- tokenizer_config.json +74 -73
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
CHANGED
@@ -1,394 +1,140 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
141 |
-
-->
|
142 |
-
|
143 |
-
<!--
|
144 |
-
## Bias, Risks and Limitations
|
145 |
-
|
146 |
-
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
147 |
-
-->
|
148 |
-
|
149 |
-
<!--
|
150 |
-
### Recommendations
|
151 |
-
|
152 |
-
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
153 |
-
-->
|
154 |
-
|
155 |
-
## Training Details
|
156 |
-
|
157 |
-
### Training Datasets
|
158 |
-
|
159 |
-
#### skill_sentence
|
160 |
-
|
161 |
-
* Dataset: skill_sentence
|
162 |
-
* Size: 138,260 training samples
|
163 |
-
* Columns: <code>anchor</code>, <code>positive</code>, and <code>type</code>
|
164 |
-
* Approximate statistics based on the first 1000 samples:
|
165 |
-
| | anchor | positive | type |
|
166 |
-
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|
|
167 |
-
| type | string | string | string |
|
168 |
-
| details | <ul><li>min: 9 tokens</li><li>mean: 35.67 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.12 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 5.0 tokens</li><li>max: 5 tokens</li></ul> |
|
169 |
-
* Samples:
|
170 |
-
| anchor | positive | type |
|
171 |
-
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------|:----------------------------|
|
172 |
-
| <code>duties for this role will include conducting water chemistry analysis and managing the laboratory. seeking a seasoned print manufacturing manager with knowledge of printing materials, processes and equipment.</code> | <code>water chemistry analysis</code> | <code>skill_sentence</code> |
|
173 |
-
| <code>divers must understand how to calculate dive times and limits to ensure they return safely. We are searching for a multimedia software expert with experience in sound, lighting and recording software.</code> | <code>comply with the planned time for the depth of the dive</code> | <code>skill_sentence</code> |
|
174 |
-
| <code>A successful candidate will possess the ability to calibrate laboratory equipment according to industry standards. we are seeking a candidate with experience in preparing government funding dossiers</code> | <code>prepare government funding dossiers</code> | <code>skill_sentence</code> |
|
175 |
-
* Loss: <code>custom_losses.HardMultipleNegativesRankingLoss</code> with these parameters:
|
176 |
-
```json
|
177 |
-
{
|
178 |
-
"scale": 20,
|
179 |
-
"similarity_fct": "<lambda>"
|
180 |
-
}
|
181 |
-
```
|
182 |
-
|
183 |
-
#### skill_skill
|
184 |
-
|
185 |
-
* Dataset: skill_skill
|
186 |
-
* Size: 13,891 training samples
|
187 |
-
* Columns: <code>anchor</code>, <code>positive</code>, and <code>type</code>
|
188 |
-
* Approximate statistics based on the first 1000 samples:
|
189 |
-
| | anchor | positive | type |
|
190 |
-
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|
|
191 |
-
| type | string | string | string |
|
192 |
-
| details | <ul><li>min: 6 tokens</li><li>mean: 29.09 tokens</li><li>max: 96 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.24 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 5.0 tokens</li><li>max: 5 tokens</li></ul> |
|
193 |
-
* Samples:
|
194 |
-
| anchor | positive | type |
|
195 |
-
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------|:-------------------------|
|
196 |
-
| <code>Adapt and move set pieces during rehearsals and live performances.</code> | <code>adapt sets</code> | <code>skill_skill</code> |
|
197 |
-
| <code>Prepare bread and bread products such as sandwiches for consumption.</code> | <code>prepare bread products</code> | <code>skill_skill</code> |
|
198 |
-
| <code>The strategies, methods and techniques that increase the organisation's capacity to protect and sustain the services and operations that fulfil the organisational mission and create lasting values by effectively addressing the combined issues of security, preparedness, risk and disaster recovery.</code> | <code>organisational resilience</code> | <code>skill_skill</code> |
|
199 |
-
* Loss: [<code>CachedMultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativessymmetricrankingloss) with these parameters:
|
200 |
-
```json
|
201 |
-
{
|
202 |
-
"scale": 20.0,
|
203 |
-
"similarity_fct": "cos_sim",
|
204 |
-
"mini_batch_size": 64
|
205 |
-
}
|
206 |
-
```
|
207 |
-
|
208 |
-
### Training Hyperparameters
|
209 |
-
#### Non-Default Hyperparameters
|
210 |
-
|
211 |
-
- `overwrite_output_dir`: True
|
212 |
-
- `eval_strategy`: steps
|
213 |
-
- `per_device_train_batch_size`: 4096
|
214 |
-
- `per_device_eval_batch_size`: 4096
|
215 |
-
- `num_train_epochs`: 1
|
216 |
-
- `warmup_ratio`: 0.1
|
217 |
-
- `fp16`: True
|
218 |
-
- `load_best_model_at_end`: True
|
219 |
-
|
220 |
-
#### All Hyperparameters
|
221 |
-
<details><summary>Click to expand</summary>
|
222 |
-
|
223 |
-
- `overwrite_output_dir`: True
|
224 |
-
- `do_predict`: False
|
225 |
-
- `eval_strategy`: steps
|
226 |
-
- `prediction_loss_only`: True
|
227 |
-
- `per_device_train_batch_size`: 4096
|
228 |
-
- `per_device_eval_batch_size`: 4096
|
229 |
-
- `per_gpu_train_batch_size`: None
|
230 |
-
- `per_gpu_eval_batch_size`: None
|
231 |
-
- `gradient_accumulation_steps`: 1
|
232 |
-
- `eval_accumulation_steps`: None
|
233 |
-
- `torch_empty_cache_steps`: None
|
234 |
-
- `learning_rate`: 5e-05
|
235 |
-
- `weight_decay`: 0.0
|
236 |
-
- `adam_beta1`: 0.9
|
237 |
-
- `adam_beta2`: 0.999
|
238 |
-
- `adam_epsilon`: 1e-08
|
239 |
-
- `max_grad_norm`: 1.0
|
240 |
-
- `num_train_epochs`: 1
|
241 |
-
- `max_steps`: -1
|
242 |
-
- `lr_scheduler_type`: linear
|
243 |
-
- `lr_scheduler_kwargs`: {}
|
244 |
-
- `warmup_ratio`: 0.1
|
245 |
-
- `warmup_steps`: 0
|
246 |
-
- `log_level`: passive
|
247 |
-
- `log_level_replica`: warning
|
248 |
-
- `log_on_each_node`: True
|
249 |
-
- `logging_nan_inf_filter`: True
|
250 |
-
- `save_safetensors`: True
|
251 |
-
- `save_on_each_node`: False
|
252 |
-
- `save_only_model`: False
|
253 |
-
- `restore_callback_states_from_checkpoint`: False
|
254 |
-
- `no_cuda`: False
|
255 |
-
- `use_cpu`: False
|
256 |
-
- `use_mps_device`: False
|
257 |
-
- `seed`: 42
|
258 |
-
- `data_seed`: None
|
259 |
-
- `jit_mode_eval`: False
|
260 |
-
- `use_ipex`: False
|
261 |
-
- `bf16`: False
|
262 |
-
- `fp16`: True
|
263 |
-
- `fp16_opt_level`: O1
|
264 |
-
- `half_precision_backend`: auto
|
265 |
-
- `bf16_full_eval`: False
|
266 |
-
- `fp16_full_eval`: False
|
267 |
-
- `tf32`: None
|
268 |
-
- `local_rank`: 0
|
269 |
-
- `ddp_backend`: None
|
270 |
-
- `tpu_num_cores`: None
|
271 |
-
- `tpu_metrics_debug`: False
|
272 |
-
- `debug`: []
|
273 |
-
- `dataloader_drop_last`: False
|
274 |
-
- `dataloader_num_workers`: 0
|
275 |
-
- `dataloader_prefetch_factor`: None
|
276 |
-
- `past_index`: -1
|
277 |
-
- `disable_tqdm`: False
|
278 |
-
- `remove_unused_columns`: True
|
279 |
-
- `label_names`: None
|
280 |
-
- `load_best_model_at_end`: True
|
281 |
-
- `ignore_data_skip`: False
|
282 |
-
- `fsdp`: []
|
283 |
-
- `fsdp_min_num_params`: 0
|
284 |
-
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
285 |
-
- `fsdp_transformer_layer_cls_to_wrap`: None
|
286 |
-
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
287 |
-
- `deepspeed`: None
|
288 |
-
- `label_smoothing_factor`: 0.0
|
289 |
-
- `optim`: adamw_torch
|
290 |
-
- `optim_args`: None
|
291 |
-
- `adafactor`: False
|
292 |
-
- `group_by_length`: False
|
293 |
-
- `length_column_name`: length
|
294 |
-
- `ddp_find_unused_parameters`: None
|
295 |
-
- `ddp_bucket_cap_mb`: None
|
296 |
-
- `ddp_broadcast_buffers`: False
|
297 |
-
- `dataloader_pin_memory`: True
|
298 |
-
- `dataloader_persistent_workers`: False
|
299 |
-
- `skip_memory_metrics`: True
|
300 |
-
- `use_legacy_prediction_loop`: False
|
301 |
-
- `push_to_hub`: False
|
302 |
-
- `resume_from_checkpoint`: None
|
303 |
-
- `hub_model_id`: None
|
304 |
-
- `hub_strategy`: every_save
|
305 |
-
- `hub_private_repo`: False
|
306 |
-
- `hub_always_push`: False
|
307 |
-
- `gradient_checkpointing`: False
|
308 |
-
- `gradient_checkpointing_kwargs`: None
|
309 |
-
- `include_inputs_for_metrics`: False
|
310 |
-
- `eval_do_concat_batches`: True
|
311 |
-
- `fp16_backend`: auto
|
312 |
-
- `push_to_hub_model_id`: None
|
313 |
-
- `push_to_hub_organization`: None
|
314 |
-
- `mp_parameters`:
|
315 |
-
- `auto_find_batch_size`: False
|
316 |
-
- `full_determinism`: False
|
317 |
-
- `torchdynamo`: None
|
318 |
-
- `ray_scope`: last
|
319 |
-
- `ddp_timeout`: 1800
|
320 |
-
- `torch_compile`: False
|
321 |
-
- `torch_compile_backend`: None
|
322 |
-
- `torch_compile_mode`: None
|
323 |
-
- `dispatch_batches`: None
|
324 |
-
- `split_batches`: None
|
325 |
-
- `include_tokens_per_second`: False
|
326 |
-
- `include_num_input_tokens_seen`: False
|
327 |
-
- `neftune_noise_alpha`: None
|
328 |
-
- `optim_target_modules`: None
|
329 |
-
- `batch_eval_metrics`: False
|
330 |
-
- `eval_on_start`: False
|
331 |
-
- `eval_use_gather_object`: False
|
332 |
-
- `batch_sampler`: batch_sampler
|
333 |
-
- `multi_dataset_batch_sampler`: proportional
|
334 |
-
|
335 |
-
</details>
|
336 |
-
|
337 |
-
### Training Logs
|
338 |
-
| Epoch | Step |
|
339 |
-
|:----------:|:------:|
|
340 |
-
| 0.1053 | 4 |
|
341 |
-
| 0.2105 | 8 |
|
342 |
-
| 0.3158 | 12 |
|
343 |
-
| 0.4211 | 16 |
|
344 |
-
| 0.5263 | 20 |
|
345 |
-
| 0.6316 | 24 |
|
346 |
-
| **0.7368** | **28** |
|
347 |
-
| 0.8421 | 32 |
|
348 |
-
| 0.9474 | 36 |
|
349 |
-
|
350 |
-
* The bold row denotes the saved checkpoint.
|
351 |
-
|
352 |
-
### Framework Versions
|
353 |
-
- Python: 3.9.19
|
354 |
-
- Sentence Transformers: 3.1.0
|
355 |
-
- Transformers: 4.44.2
|
356 |
-
- PyTorch: 2.4.1+cu118
|
357 |
-
- Accelerate: 0.34.2
|
358 |
-
- Datasets: 3.0.0
|
359 |
-
- Tokenizers: 0.19.1
|
360 |
-
|
361 |
-
## Citation
|
362 |
-
|
363 |
-
### BibTeX
|
364 |
-
|
365 |
-
#### Sentence Transformers
|
366 |
-
```bibtex
|
367 |
-
@inproceedings{reimers-2019-sentence-bert,
|
368 |
-
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
369 |
-
author = "Reimers, Nils and Gurevych, Iryna",
|
370 |
-
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
371 |
-
month = "11",
|
372 |
-
year = "2019",
|
373 |
-
publisher = "Association for Computational Linguistics",
|
374 |
-
url = "https://arxiv.org/abs/1908.10084",
|
375 |
-
}
|
376 |
-
```
|
377 |
-
|
378 |
-
<!--
|
379 |
-
## Glossary
|
380 |
-
|
381 |
-
*Clearly define terms in order to be accessible across audiences.*
|
382 |
-
-->
|
383 |
-
|
384 |
-
<!--
|
385 |
-
## Model Card Authors
|
386 |
-
|
387 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
388 |
-
-->
|
389 |
-
|
390 |
-
<!--
|
391 |
-
## Model Card Contact
|
392 |
-
|
393 |
-
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
394 |
-->
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
pipeline_tag: sentence-similarity
|
7 |
+
library_name: sentence-transformers
|
8 |
+
---
|
9 |
+
|
10 |
+
# SentenceTransformer
|
11 |
+
|
12 |
+
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
13 |
+
|
14 |
+
## Model Details
|
15 |
+
|
16 |
+
### Model Description
|
17 |
+
- **Model Type:** Sentence Transformer
|
18 |
+
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
|
19 |
+
- **Maximum Sequence Length:** 512 tokens
|
20 |
+
- **Output Dimensionality:** 768 dimensions
|
21 |
+
- **Similarity Function:** Cosine Similarity
|
22 |
+
<!-- - **Training Dataset:** Unknown -->
|
23 |
+
<!-- - **Language:** Unknown -->
|
24 |
+
<!-- - **License:** Unknown -->
|
25 |
+
|
26 |
+
### Model Sources
|
27 |
+
|
28 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
29 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
30 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
31 |
+
|
32 |
+
### Full Model Architecture
|
33 |
+
|
34 |
+
```
|
35 |
+
SentenceTransformer(
|
36 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
|
37 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
38 |
+
)
|
39 |
+
```
|
40 |
+
|
41 |
+
## Usage
|
42 |
+
|
43 |
+
### Direct Usage (Sentence Transformers)
|
44 |
+
|
45 |
+
First install the Sentence Transformers library:
|
46 |
+
|
47 |
+
```bash
|
48 |
+
pip install -U sentence-transformers
|
49 |
+
```
|
50 |
+
|
51 |
+
Then you can load this model and run inference.
|
52 |
+
```python
|
53 |
+
from sentence_transformers import SentenceTransformer
|
54 |
+
|
55 |
+
# Download from the 🤗 Hub
|
56 |
+
model = SentenceTransformer("jensjorisdecorte/ConTeXT-Skill-Extraction-base")
|
57 |
+
# Run inference
|
58 |
+
sentences = [
|
59 |
+
'The weather is lovely today.',
|
60 |
+
"It's so sunny outside!",
|
61 |
+
'He drove to the stadium.',
|
62 |
+
]
|
63 |
+
embeddings = model.encode(sentences)
|
64 |
+
print(embeddings.shape)
|
65 |
+
# [3, 768]
|
66 |
+
|
67 |
+
# Get the similarity scores for the embeddings
|
68 |
+
similarities = model.similarity(embeddings, embeddings)
|
69 |
+
print(similarities.shape)
|
70 |
+
# [3, 3]
|
71 |
+
```
|
72 |
+
|
73 |
+
<!--
|
74 |
+
### Direct Usage (Transformers)
|
75 |
+
|
76 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
77 |
+
|
78 |
+
</details>
|
79 |
+
-->
|
80 |
+
|
81 |
+
<!--
|
82 |
+
### Downstream Usage (Sentence Transformers)
|
83 |
+
|
84 |
+
You can finetune this model on your own dataset.
|
85 |
+
|
86 |
+
<details><summary>Click to expand</summary>
|
87 |
+
|
88 |
+
</details>
|
89 |
+
-->
|
90 |
+
|
91 |
+
<!--
|
92 |
+
### Out-of-Scope Use
|
93 |
+
|
94 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
95 |
+
-->
|
96 |
+
|
97 |
+
<!--
|
98 |
+
## Bias, Risks and Limitations
|
99 |
+
|
100 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
101 |
+
-->
|
102 |
+
|
103 |
+
<!--
|
104 |
+
### Recommendations
|
105 |
+
|
106 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
107 |
+
-->
|
108 |
+
|
109 |
+
## Training Details
|
110 |
+
|
111 |
+
### Framework Versions
|
112 |
+
- Python: 3.10.16
|
113 |
+
- Sentence Transformers: 3.4.0
|
114 |
+
- Transformers: 4.48.1
|
115 |
+
- PyTorch: 2.5.1+cpu
|
116 |
+
- Accelerate: 1.3.0
|
117 |
+
- Datasets: 3.2.0
|
118 |
+
- Tokenizers: 0.21.0
|
119 |
+
|
120 |
+
## Citation
|
121 |
+
|
122 |
+
### BibTeX
|
123 |
+
|
124 |
+
<!--
|
125 |
+
## Glossary
|
126 |
+
|
127 |
+
*Clearly define terms in order to be accessible across audiences.*
|
128 |
+
-->
|
129 |
+
|
130 |
+
<!--
|
131 |
+
## Model Card Authors
|
132 |
+
|
133 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
134 |
+
-->
|
135 |
+
|
136 |
+
<!--
|
137 |
+
## Model Card Contact
|
138 |
+
|
139 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
-->
|
config.json
CHANGED
@@ -1,24 +1,24 @@
|
|
1 |
-
{
|
2 |
-
"_name_or_path": "final-ablation-output/D-desc_scale=20_lr=5e-05_batch_size=4096_symmetric_loss=True_learn_ontology_0",
|
3 |
-
"architectures": [
|
4 |
-
"MPNetModel"
|
5 |
-
],
|
6 |
-
"attention_probs_dropout_prob": 0.1,
|
7 |
-
"bos_token_id": 0,
|
8 |
-
"eos_token_id": 2,
|
9 |
-
"hidden_act": "gelu",
|
10 |
-
"hidden_dropout_prob": 0.1,
|
11 |
-
"hidden_size": 768,
|
12 |
-
"initializer_range": 0.02,
|
13 |
-
"intermediate_size": 3072,
|
14 |
-
"layer_norm_eps": 1e-05,
|
15 |
-
"max_position_embeddings": 514,
|
16 |
-
"model_type": "mpnet",
|
17 |
-
"num_attention_heads": 12,
|
18 |
-
"num_hidden_layers": 12,
|
19 |
-
"pad_token_id": 1,
|
20 |
-
"relative_attention_num_buckets": 32,
|
21 |
-
"torch_dtype": "float32",
|
22 |
-
"transformers_version": "4.
|
23 |
-
"vocab_size": 30527
|
24 |
-
}
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "../final/final-ablation-output/D-desc_scale=20_lr=5e-05_batch_size=4096_symmetric_loss=True_learn_ontology_0",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.48.1",
|
23 |
+
"vocab_size": 30527
|
24 |
+
}
|
config_sentence_transformers.json
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
-
{
|
2 |
-
"__version__": {
|
3 |
-
"sentence_transformers": "3.
|
4 |
-
"transformers": "4.
|
5 |
-
"pytorch": "2.
|
6 |
-
},
|
7 |
-
"prompts": {},
|
8 |
-
"default_prompt_name": null,
|
9 |
-
"similarity_fn_name":
|
10 |
}
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.0",
|
4 |
+
"transformers": "4.48.1",
|
5 |
+
"pytorch": "2.5.1+cpu"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
}
|
modules.json
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
-
[
|
2 |
-
{
|
3 |
-
"idx": 0,
|
4 |
-
"name": "0",
|
5 |
-
"path": "",
|
6 |
-
"type": "sentence_transformers.models.Transformer"
|
7 |
-
},
|
8 |
-
{
|
9 |
-
"idx": 1,
|
10 |
-
"name": "1",
|
11 |
-
"path": "
|
12 |
-
"type": "
|
13 |
-
}
|
14 |
]
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
]
|
sentence_bert_config.json
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
{
|
2 |
-
"max_seq_length": 512,
|
3 |
-
"do_lower_case": false
|
4 |
}
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
}
|
special_tokens_map.json
CHANGED
@@ -1,51 +1,51 @@
|
|
1 |
-
{
|
2 |
-
"bos_token": {
|
3 |
-
"content": "<s>",
|
4 |
-
"lstrip": false,
|
5 |
-
"normalized": false,
|
6 |
-
"rstrip": false,
|
7 |
-
"single_word": false
|
8 |
-
},
|
9 |
-
"cls_token": {
|
10 |
-
"content": "<s>",
|
11 |
-
"lstrip": false,
|
12 |
-
"normalized": false,
|
13 |
-
"rstrip": false,
|
14 |
-
"single_word": false
|
15 |
-
},
|
16 |
-
"eos_token": {
|
17 |
-
"content": "</s>",
|
18 |
-
"lstrip": false,
|
19 |
-
"normalized": false,
|
20 |
-
"rstrip": false,
|
21 |
-
"single_word": false
|
22 |
-
},
|
23 |
-
"mask_token": {
|
24 |
-
"content": "<mask>",
|
25 |
-
"lstrip": true,
|
26 |
-
"normalized": false,
|
27 |
-
"rstrip": false,
|
28 |
-
"single_word": false
|
29 |
-
},
|
30 |
-
"pad_token": {
|
31 |
-
"content": "<pad>",
|
32 |
-
"lstrip": false,
|
33 |
-
"normalized": false,
|
34 |
-
"rstrip": false,
|
35 |
-
"single_word": false
|
36 |
-
},
|
37 |
-
"sep_token": {
|
38 |
-
"content": "</s>",
|
39 |
-
"lstrip": false,
|
40 |
-
"normalized": false,
|
41 |
-
"rstrip": false,
|
42 |
-
"single_word": false
|
43 |
-
},
|
44 |
-
"unk_token": {
|
45 |
-
"content": "[UNK]",
|
46 |
-
"lstrip": false,
|
47 |
-
"normalized": false,
|
48 |
-
"rstrip": false,
|
49 |
-
"single_word": false
|
50 |
-
}
|
51 |
-
}
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer_config.json
CHANGED
@@ -1,73 +1,74 @@
|
|
1 |
-
{
|
2 |
-
"added_tokens_decoder": {
|
3 |
-
"0": {
|
4 |
-
"content": "<s>",
|
5 |
-
"lstrip": false,
|
6 |
-
"normalized": false,
|
7 |
-
"rstrip": false,
|
8 |
-
"single_word": false,
|
9 |
-
"special": true
|
10 |
-
},
|
11 |
-
"1": {
|
12 |
-
"content": "<pad>",
|
13 |
-
"lstrip": false,
|
14 |
-
"normalized": false,
|
15 |
-
"rstrip": false,
|
16 |
-
"single_word": false,
|
17 |
-
"special": true
|
18 |
-
},
|
19 |
-
"2": {
|
20 |
-
"content": "</s>",
|
21 |
-
"lstrip": false,
|
22 |
-
"normalized": false,
|
23 |
-
"rstrip": false,
|
24 |
-
"single_word": false,
|
25 |
-
"special": true
|
26 |
-
},
|
27 |
-
"3": {
|
28 |
-
"content": "<unk>",
|
29 |
-
"lstrip": false,
|
30 |
-
"normalized": true,
|
31 |
-
"rstrip": false,
|
32 |
-
"single_word": false,
|
33 |
-
"special": true
|
34 |
-
},
|
35 |
-
"104": {
|
36 |
-
"content": "[UNK]",
|
37 |
-
"lstrip": false,
|
38 |
-
"normalized": false,
|
39 |
-
"rstrip": false,
|
40 |
-
"single_word": false,
|
41 |
-
"special": true
|
42 |
-
},
|
43 |
-
"30526": {
|
44 |
-
"content": "<mask>",
|
45 |
-
"lstrip": true,
|
46 |
-
"normalized": false,
|
47 |
-
"rstrip": false,
|
48 |
-
"single_word": false,
|
49 |
-
"special": true
|
50 |
-
}
|
51 |
-
},
|
52 |
-
"bos_token": "<s>",
|
53 |
-
"clean_up_tokenization_spaces": true,
|
54 |
-
"cls_token": "<s>",
|
55 |
-
"do_lower_case": true,
|
56 |
-
"eos_token": "</s>",
|
57 |
-
"
|
58 |
-
"
|
59 |
-
"
|
60 |
-
"
|
61 |
-
"
|
62 |
-
"
|
63 |
-
"
|
64 |
-
"
|
65 |
-
"
|
66 |
-
"
|
67 |
-
"
|
68 |
-
"
|
69 |
-
"
|
70 |
-
"
|
71 |
-
"
|
72 |
-
"
|
73 |
-
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"104": {
|
36 |
+
"content": "[UNK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"30526": {
|
44 |
+
"content": "<mask>",
|
45 |
+
"lstrip": true,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
}
|
51 |
+
},
|
52 |
+
"bos_token": "<s>",
|
53 |
+
"clean_up_tokenization_spaces": true,
|
54 |
+
"cls_token": "<s>",
|
55 |
+
"do_lower_case": true,
|
56 |
+
"eos_token": "</s>",
|
57 |
+
"extra_special_tokens": {},
|
58 |
+
"mask_token": "<mask>",
|
59 |
+
"max_length": 128,
|
60 |
+
"max_seq_length": 96,
|
61 |
+
"model_max_length": 96,
|
62 |
+
"pad_to_multiple_of": null,
|
63 |
+
"pad_token": "<pad>",
|
64 |
+
"pad_token_type_id": 0,
|
65 |
+
"padding_side": "right",
|
66 |
+
"sep_token": "</s>",
|
67 |
+
"stride": 0,
|
68 |
+
"strip_accents": null,
|
69 |
+
"tokenize_chinese_chars": true,
|
70 |
+
"tokenizer_class": "MPNetTokenizer",
|
71 |
+
"truncation_side": "right",
|
72 |
+
"truncation_strategy": "longest_first",
|
73 |
+
"unk_token": "[UNK]"
|
74 |
+
}
|