Add an example for basic usage
Browse files
README.md
CHANGED
|
@@ -28,6 +28,110 @@ More details can be found in our paper on arxiv: [*ToolACE: Winning the Points
|
|
| 28 |

|
| 29 |
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
### Citation
|
| 32 |
|
| 33 |
If you think ToolACE is useful in your work, please cite our paper:
|
|
|
|
| 28 |

|
| 29 |
|
| 30 |
|
| 31 |
+
### Usage
|
| 32 |
+
Here we provide a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate function calling with given functions.
|
| 33 |
+
|
| 34 |
+
```python
|
| 35 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 36 |
+
|
| 37 |
+
model_name = "/home/huangxu/work/OpenLLMs/ToolACE-8B-zh-v2.2_1ep"
|
| 38 |
+
|
| 39 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 40 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 41 |
+
model_name,
|
| 42 |
+
torch_dtype='auto',
|
| 43 |
+
device_map='auto'
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
# You can modify the prompt for your task
|
| 48 |
+
system_prompt = """You are an expert in composing functions. You are given a question and a set of possible functions. Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
|
| 49 |
+
If none of the function can be used, point it out. If the given question lacks the parameters required by the function, also point it out.
|
| 50 |
+
You should only return the function call in tools call sections.
|
| 51 |
+
|
| 52 |
+
If you decide to invoke any of the function(s), you MUST put it in the format of [func_name1(params_name1=params_value1, params_name2=params_value2...), func_name2(params)]
|
| 53 |
+
You SHOULD NOT include any other text in the response.
|
| 54 |
+
Here is a list of functions in JSON format that you can invoke.\n{functions}\n
|
| 55 |
+
"""
|
| 56 |
+
|
| 57 |
+
# User query
|
| 58 |
+
query = "Find me the sales growth rate for company XYZ for the last 3 years and also the interest coverage ratio for the same duration."
|
| 59 |
+
|
| 60 |
+
# Availabel tools in JSON format (OpenAI-format)
|
| 61 |
+
tools = [
|
| 62 |
+
{
|
| 63 |
+
"name": "financial_ratios.interest_coverage", "description": "Calculate a company's interest coverage ratio given the company name and duration",
|
| 64 |
+
"arguments": {
|
| 65 |
+
"type": "dict",
|
| 66 |
+
"properties": {
|
| 67 |
+
"company_name": {
|
| 68 |
+
"type": "string",
|
| 69 |
+
"description": "The name of the company."
|
| 70 |
+
},
|
| 71 |
+
"years": {
|
| 72 |
+
"type": "integer",
|
| 73 |
+
"description": "Number of past years to calculate the ratio."
|
| 74 |
+
}
|
| 75 |
+
},
|
| 76 |
+
"required": ["company_name", "years"]
|
| 77 |
+
}
|
| 78 |
+
},
|
| 79 |
+
{
|
| 80 |
+
"name": "sales_growth.calculate",
|
| 81 |
+
"description": "Calculate a company's sales growth rate given the company name and duration",
|
| 82 |
+
"arguments": {
|
| 83 |
+
"type": "dict",
|
| 84 |
+
"properties": {
|
| 85 |
+
"company": {
|
| 86 |
+
"type": "string",
|
| 87 |
+
"description": "The company that you want to get the sales growth rate for."
|
| 88 |
+
},
|
| 89 |
+
"years": {
|
| 90 |
+
"type": "integer",
|
| 91 |
+
"description": "Number of past years for which to calculate the sales growth rate."
|
| 92 |
+
}
|
| 93 |
+
},
|
| 94 |
+
"required": ["company", "years"]
|
| 95 |
+
}
|
| 96 |
+
},
|
| 97 |
+
{
|
| 98 |
+
"name": "weather_forecast",
|
| 99 |
+
"description": "Retrieve a weather forecast for a specific location and time frame.",
|
| 100 |
+
"arguments": {
|
| 101 |
+
"type": "dict",
|
| 102 |
+
"properties": {
|
| 103 |
+
"location": {
|
| 104 |
+
"type": "string",
|
| 105 |
+
"description": "The city that you want to get the weather for."
|
| 106 |
+
},
|
| 107 |
+
"days": {
|
| 108 |
+
"type": "integer",
|
| 109 |
+
"description": "Number of days for the forecast."
|
| 110 |
+
}
|
| 111 |
+
},
|
| 112 |
+
"required": ["location", "days"]
|
| 113 |
+
}
|
| 114 |
+
}
|
| 115 |
+
]
|
| 116 |
+
|
| 117 |
+
messages = [
|
| 118 |
+
{'role': 'system', 'content': system_prompt.format(functions=tools)},
|
| 119 |
+
{'role': 'user', 'content': query}
|
| 120 |
+
]
|
| 121 |
+
|
| 122 |
+
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
| 123 |
+
|
| 124 |
+
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
|
| 125 |
+
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
|
| 126 |
+
```
|
| 127 |
+
|
| 128 |
+
Then you should be able to see the following output functional calls:
|
| 129 |
+
```
|
| 130 |
+
[sales_growth.calculate(company="XYZ", years=3), financial_ratios.interest_coverage(company_name="XYZ", years=3)]
|
| 131 |
+
```
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
### Citation
|
| 136 |
|
| 137 |
If you think ToolACE is useful in your work, please cite our paper:
|